
Page 1 of 35

FORMULIB : Formulaic Language Software Library
(User Notes by Richard Forsyth, June 2016)

This software helps to explore the somewhat nebulous concept of "formulaic language" as well as
identifying relatively typical or anomalous texts within given text types. There are four programs in
the suite: outgrams.py, which finds commonly occurring n-grams in a selection of texts (where n can
range between 1 and 9 but is typically 2 to 6); formulex.py, which calculates, among other things, an
index of formulaic coverage both in individual documents and in text categories; flicshow.py which
produces html files that highlight the token sequences actually covered by the n-grams found by
outgrams.py; and taverns.py which ranks individual texts according to how completely the n-grams
found from each category of text cover texts from the same and from other categories. The last
program not only indicates which texts are typical or atypical of their type but can be used in text-
classification mode to allocate documents to their most compatible categories, with an indication of
the strength of each such allocation.

The programs are written in Python3 and made available under the GNU public licence for general
usage.

Why I Wrote this Software
Over the past three years I have been drawn into investigating concept of "formulaic language"
(Wray, 2002). This notion means subtly different things to different linguists, so I won't attempt to
provide a definition. Nevertheless, there does seem to be a core notion common to most
interpretations of the term, namely that formulaic discourse relies more heavily on relatively fixed,
apparently prefabricated, sequences of language elements than the more creative uses of language
emphasized by linguists such as Chomsky (1972). After all, it is obvious to anyone whose eyes glaze
over trying to read the legalistic fine print in a consumer contract that some texts are much more
repetitive than others.

The question then arises whether it is possible to measure the amount of formulaic language in a
text or group of texts. Strictly speaking, without a definition of formulaic language, this isn't possible.
However, repetitions of various kinds can be counted, and since repetitiveness is at the heart of this
matter, it seems plausible that a measure based on frequently recurring token sequences could have
practical value as an indicator. It could be highly effective in picking up the tell-tale signs produced in
real texts by reliance on formulaic phrasings. Thus it could provide a useful tool for those wanting to
separate, so to speak, the idiom-principle sheep from the open-choice goats in various collections of
documents.

The programs described here implement this idea to perform four related functions:

 outgrams.py compiles the components of a 'formulexicon' by finding the most frequent n1-
grams up to n2-grams in 2 or more groups of text files where n1 is 2 and n2 is 5 by default;

 formulex.py computes what proportion of each document (and hence each text category) is
covered by the elements of this formulexicon, as well as producing a list of 'collocades'
(cascades of collocations, to be explained below);

 flicshow.py (Formulaic Language In Context) allows a user to select a number of text files
and see precisely which sequences are covered by the elements of the formulexicon;

 taverns.py computes coverage of 2 or more categories of document not only by the
collocades generated from their own category but by those of the other categories, thus
identifying highly typical and highly atypical texts in each class, and performs a classification
as well.

Page 2 of 35

(The programs of the keysoft suite are also provided in the distribution. See keysoft.pdf for details.
Some day I may have time to integrate these two related software suites better.)

Setting Up
First you need Python3. If you don't have it already, the latest version can be downloaded and
installed from the Python website: www.python.org. This is usually quite straightforward. The only
snag is if you have Python2 and want to keep using it. Then you'll probably have to set up a specific
command to run whichever version you use less frequently.

Next step is to unpack the formulib.zip file. After unpacking it (into a folder called "formulib",
preferably at the C:\ level in Windows unless you want to do quite a lot of editing), you should find
the following subfolders.

mets
op
p3
parapath
samples

The programs are in p3. Sample test corpora will be found in samples. Subfolder op is the default
location for output files and parapath is a convenient place for storing parameter files, which will be
explained later. Subfolder mets is the default location for metafiles which will be explained below.

Corpus Format
This software is document-oriented. It presumes that a corpus consists of a number of separate text
files (in UTF8 encoding). Each file is treated as an individual document, belonging to a particular
category.

In the samples folder you will find seven subfolders containing files from seven different text
sources. These contain datasets that enable you to start using the system, prior to collecting &/or
reformatting your own corpora. (More details in Appendix 3.)

Overall Outline
As mentioned above, the software comprises four main programs with complementary functions
which would normally be executed in sequence.

Program Input metafile(s) Main outputs

outgrams.py metafile / trainmet
['training set']

1. _gram.txt n-grams ordered by size then frequency for
each category of text;
2. _list.txt n-grams ordered by frequency only (with
various sizes intermingled) for each category of text.

formulex.py trainmet / metafile
(testmeta) ['test set']

1. _food.txt (Formulaic Ordering Of Documents)
2. _flab.txt (Frequent Lexically Assembled Bundles)

flicshow.py metaflic colour-coded html files in a separate directory for viewing
with a browser.

taverns.py gramdata
testmeta

1. _ales.txt (Affinity Listing Exploiting Sequences)
2. _blox.txt (Basic List Of Covering Sequences)

The distribution also includes a couple of utility programs, metaget.py and randmet.py, which are
described below.

http://www.python.org/

Page 3 of 35

Making a Metafile
Below is a complete listing of a metafile relating to wine portion the bottlabs corpus. It has three
columns. A metafile could have more columns than three, but not less. The top line is a header,
giving the column names. The first column must be called prepath. It indicates the directory/folder
where a particular file resides. The second must be called filename and is the file name of a
particular text. The other column contains class labels. It can be called anything, though doctype is
the default. (See details of parameter files for alternative ways of indicating the class of a text.)
Columns are separated by the horizontal tab character. (Code point 9 in ASCII and Unicode/utf8.)
Each line refers to a separate document.

prepath filename doctype

C:\formulib\samples\bottlabs\wine\ 2011_old_man_creek.txt wine

C:\formulib\samples\bottlabs\wine\ alta_vista_premium_2011.txt wine

C:\formulib\samples\bottlabs\wine\ arniston_bay_coast.txt wine

C:\formulib\samples\bottlabs\wine\ ashgrove_malbec.txt wine

C:\formulib\samples\bottlabs\wine\ black_label_red.txt wine

C:\formulib\samples\bottlabs\wine\ campo_viejo_rioja.txt wine

C:\formulib\samples\bottlabs\wine\ coop_chianti_2013.txt wine

C:\formulib\samples\bottlabs\wine\ coop_chilean_merlot.txt wine

C:\formulib\samples\bottlabs\wine\ coop_cotes_du_rhone_2014.txt wine

C:\formulib\samples\bottlabs\wine\ coop_explorers_vineyard.txt wine

C:\formulib\samples\bottlabs\wine\ coop_fairtrade_chenin_blanc.txt wine

C:\formulib\samples\bottlabs\wine\ coop_shiraz_rose.txt wine

C:\formulib\samples\bottlabs\wine\ crooked_creek_vineyards_lenoir_2011.txt

 wine

C:\formulib\samples\bottlabs\wine\ fabcab.txt wine

C:\formulib\samples\bottlabs\wine\ fairtrade_cabernet_sauvignon.txt wine

C:\formulib\samples\bottlabs\wine\ fairtrade_cinsault_shiraz_sa.txt wine

C:\formulib\samples\bottlabs\wine\ ferreira_port_ruby.txt wine

C:\formulib\samples\bottlabs\wine\ ferreira_port_tawny.txt wine

C:\formulib\samples\bottlabs\wine\ finca_carelio.txt wine

C:\formulib\samples\bottlabs\wine\ finca_las_moras_shiraz.txt wine

C:\formulib\samples\bottlabs\wine\ hardys_privatebin_shiraz.txt wine

C:\formulib\samples\bottlabs\wine\ hardys_stamp_of_australia.txt wine

C:\formulib\samples\bottlabs\wine\ hardys_voyage_2015.txt wine

C:\formulib\samples\bottlabs\wine\ inycon_growers_choice.txt wine

C:\formulib\samples\bottlabs\wine\ kissing_tree_zinfandel.txt wine

C:\formulib\samples\bottlabs\wine\ kumala_2013.txt wine

C:\formulib\samples\bottlabs\wine\ la_chiave_2013.txt wine

C:\formulib\samples\bottlabs\wine\ la_consulta.txt wine

C:\formulib\samples\bottlabs\wine\ la_paz_merlot.txt wine

C:\formulib\samples\bottlabs\wine\ le_provenance_cotes_de_provence.txt

 wine

C:\formulib\samples\bottlabs\wine\ lime_tree_cabernet_sauvignon.txt wine

C:\formulib\samples\bottlabs\wine\ long_slim_chile.txt wine

C:\formulib\samples\bottlabs\wine\ merlot_kekfrankos_2014.txt wine

C:\formulib\samples\bottlabs\wine\ mondelli_montepulciano.txt wine

C:\formulib\samples\bottlabs\wine\ ms_corte_ibla.txt wine

C:\formulib\samples\bottlabs\wine\ ms_crozes_hermitage.txt wine

C:\formulib\samples\bottlabs\wine\ nero_davola_syrah.txt wine

C:\formulib\samples\bottlabs\wine\ one_tree_lake_shiraz.txt wine

C:\formulib\samples\bottlabs\wine\ orvieto_classico_2014.txt wine

C:\formulib\samples\bottlabs\wine\ oxford_landing_2011_merlot.txt wine

C:\formulib\samples\bottlabs\wine\ oxford_landing_2011_sauvignon_blanc.txt

 wine

C:\formulib\samples\bottlabs\wine\ oxford_landing_estates_2012_merlot.txt

 wine

C:\formulib\samples\bottlabs\wine\ paris_street.txt wine

C:\formulib\samples\bottlabs\wine\ redtree_california_2010.txt wine

C:\formulib\samples\bottlabs\wine\ salice_salentino_2012.txt wine

C:\formulib\samples\bottlabs\wine\ terras_de_alleu.txt wine

C:\formulib\samples\bottlabs\wine\ three_mills_mini_rose.txt wine

C:\formulib\samples\bottlabs\wine\ two_ravens_2013.txt wine

C:\formulib\samples\bottlabs\wine\ valpolicella_ripasso_superiore.txt

 wine

Page 4 of 35

C:\formulib\samples\bottlabs\wine\ vanderburg_shirazpinotage_2013.txt

 wine

C:\formulib\samples\bottlabs\wine\ via_vecchio.txt wine

This metafile describes a small corpus of 51 "back label" texts from wine bottles that I have been
collecting over the past year. It cannot claim to be a statistically representative sample of what I
drink, still less of what is written on back labels worldwide, and all information about colouring,
pictorial images, placement, type fonts and such like has been lost. Moreover, I suspect I have been
somewhat inconsistent about which bits of non-English text that I have been prepared to include,
and it would be possible to argue about some of the choices made in reducing each text from 2
dimensions to a single linear sequence. Still, it is a nice accessible sample which definitely contains a
high proportion of "boilerplate" language required by legal regulations as well as some classic
oenological clichés. (More info in Appendix 3.)

The format of metafiles is intended to be suitable for manipulation in a spreadsheet package such as
Excel or OpenOffice/Calc as a tab-delimited worksheet. The idea behind this is to make it possible to
select a variety of subsets of a larger corpus as training or test texts in different runs of the system.

To make an initial metafile, it is convenient to use the metaget.py program, which is included with
the distribution. The output of this program can then be edited in a text-editor, or a spreadsheet
until it specifies exactly the desired set of files. Notepad++, a versatile text-editor that I personally
recommend, can be obtained from the website
http://notepad-plus-plus.org/
free of charge.

The metaget.py program can be run just by double-clicking on its name. It will then display a window
with four labelled entry boxes:

 Enter next category name:
 Select file(s):

Enter output metafile name:
 Exit & save metafile:

The idea is that you type a category label in the upper box (then press the Enter button) then choose
files by picking the second option which will allow the customary ways of navigating the file system
and selecting files or groups of files. This pair of actions can be repeated several times to include files
from a number of different categories &/or different folders. Then you provide a destination file
name and extension for the resulting metafile (again not forgetting to press the Enter button) and
quit using the final option. If you do forget to name the output metafile, it will be called metazero.txt
and placed on the directory from which the program was launched.

Note that entering the category or metafile name does require clicking the Enter button alongside
the text-entry box to confirm your input; just hitting Carriage-Return won't do, as I have yet to
master the intricacies of binding a keypress-response procedure to the Return key. (Still writing
programs as if the 20th century hadn't gone out of fashion, I'm afraid. Nevertheless, I suspect most
people will find metaget.py somewhat simpler to use than its precursor minimet4.py, though I doubt
if it will eliminate cases where using a text-editor, such as Notepad++, will still be needed to put a
nearly-correct metafile into its final form.)

The mets subfolder contains several metafiles that you can inspect as examples before making your
own. Many of these come in groups of three, such as the trio below.

http://notepad-plus-plus.org/

Page 5 of 35

ares_1.txt
ares_2.txt
aresmeta.txt

In this group aresmeta.txt is a metafile for all the UN General Assembly resolutions held in subfolder
ares (700 of them). Metafiles ares_1.txt and ares_2.txt contain the names of files forming randomly
chosen disjoint subsets of the whole ares collection. Triplets of metafiles for the other 6 text types
that follow the same pattern are also provided.

Preparing a Parameter File
Below is a listing of parameter file formtest.txt which comes with the formulib distribution.

comment formulib testing :

jobname formtest

metafile c:\formulib\mets\mainmeta.txt

outmeta1 c:\formulib\mets\training.txt

outmeta2 c:\formulib\mets\testing.txt

randfrac 0.61803398875

trainmet c:\formulib\mets\training.txt

testmeta c:\formulib\mets\testing.txt

metaflic c:\formulib\mets\testing.txt

wordonly 1

maxtops 20

topgrams 80

outforms 80

miniglen 3

maxiglen 6

##outpath c:\fout\

topkeys 64

A parameter file is just a plain text file with one item per line. Each line should begin with the
parameter name, then 1 or more blank spaces, then the parameter value. Again, the simplest way to
make a parameter file is by using Notepad++ or a similar text editor. The following table interprets
the above parameter file, line by line.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

jobname [Name of
program being
executed]

This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a group.

metafile [None] This should be the full file specification of a metafile that indicates
the text files that belong to the corpus, each associated with its
target variable, i.e. class label, as described above.

outmeta1 [None] Specification of a file into which a random subset of items in the
input metafile will be writen. (Training example.)

outmeta2 [None] Specification of a file into which a second random subset of items in
the input metafile will be writen. (Testing examples.)

randfrac 0.5 Proportion of items in metafile to be written into outmeta1.

trainmet [None] This should be the full file specification of a metafile that indicates
the text files that belong to the 'training' corpus, each associated
with its target variable, i.e. class label, as described above.

testmeta [None] This is optional; if present it should be the full file specification of a
metafile that specifies a holdout sample of files. The idea behind this
is to check how well programs formulex.py and taverns.py perform

Page 6 of 35

on data not used by outgrams.py to generate the original list of n-
grams.

metaflic [None] This is optional; if present it should be the full file specification of the
metafile that specifies which files are to be processed by flicshow.py
to produce html files highlighting formulaic collocades.

wordonly 0 This should be integer 0 or 1. If it is 1, the tokenizer will ignore tokens
unless they begin with an alphanumeric character. If it is zero, all
tokens will be considered, even sequences of punctuation symbols
and so on.

maxtops 20 This is used to specify the number of 'stop words' considered by
outgrams.py. It can be 0, but if this number is greater than zero,
outgrams.py will compile a list of high-frequency stop-words
(method to be explained later). These will be listed in the _list.txt file
so you know what they are. Their only effect on the processing is that
an n-gram that consists solely of stop-words will not be included in
the _gram.txt file, thus won't be used by subsequent programs. In
practice, this only makes more than a trivial difference if the smallest
n-gram size is 1 (default is 2 but it can be changed).

topgrams 100 This number specifies how many of the most frequent n-grams in
each text category will be retained for each chosen value of n. Thus
with topgrams equal to 80 and the default n-gram range of 2 to 5,
320 n-grams will be generated, 80 2-grams, 80 3-grams, 80 4-grams
and 80 5-grams. (With small corpora this could be fewer, since n-
grams occurring only once or twice will be suppressed.)

outforms 100 This applies to the formulex.py and taverns.py programs and governs
how many collocades will be listed.

miniglen 2 This specifies the smallest n-gram size to be used.

maxiglen 5 This specifies the largest n-gram size to be used.

The line beginning with "##outpath" is a commented-out specification of a nonstandard folder to
receive output. By deleting the 2 hash-signs at the front it could be re-activated. I tend to keep
several such lines in a parameter file in order to try different options by commenting them in or out.

The line
topkeys 64
is applicable to the keysoft programs (see keynotes.pdf). I have tried to make it so that a single
parameter file can apply to a whole suite of programs, with each program only reading in the
parameter options that apply to it.

Running randmet.py
Lines 3 to 6 of the parameter file, above, actually apply to the randmet.py program. This is a simple
program that simply splits an input metafile randomly into 2 disjoint output metafiles, which are
intended to be used as 'training' and 'testing' subsamples. The train/test division is an idea from the
field of statistical machine-learning. In the present context it means that n-grams derived from one
subsample of a corpus would normally be applied to texts in another subsample (as well as the
training sample). This helps to give an idea of whether the figures computed are likely to be stable,
i.e. similar when applied to previously unseen texts of the same types.

Thus it is normal to start an analysis by creating a metafile describing an entire text collection and
use randmet.py to produce 2 output metafiles which describe disjoint subsets of that collection.

Page 7 of 35

Running outgrams.py
This is a fairly standard n-gram finder, which is run to provide data for the other three programs of
the suite. It can be executed by double-clicking, but it would be more usual to run it from a
command window by typing a command such as the following.

c:\formulib\p3>python outgrams.py

It will then ask for a parameter file. (See above.) If you reply with formtest.txt you can check how it
works with the samples provided. You should then see on screen something like the listing below.

C:\formulib\p3\outgrams.py 1.3 Tue May 31 16:46:24 2016

command-line args. = 1

prepath : C:\formulib\p3

working folder: C:\formulib\p3

script usage: python C:\formulib\p3\outgrams.py <parafile>

please give parameter file name : formtest

Paths to search for parameter file :

['C:\\formulib\\parapath', 'C:\\formulib\\p3', '..', '.', 'C:\\Users\\Richard.lounge-

pc\\parapath', 'C:\\Users\\Richard.lounge-pc']

 formtest

trying to open : C:\formulib\parapath\formtest.txt

C:\formulib\parapath\formtest.txt opened for reading.

c:\formulib\mets\training.txt to be used to indicate training texts.

['prepath', 'filename', 'doctype']

1953

target column name : doctype @ 2

Text types : {'wine', 'sres', 'leaflet', 'beer', 'wc', 'ares', 'tedtalk'}

Number of texts = 1953

Number of tokens= 3215180

Shortest = 56 tokens.

median size = 1310

mean size = 1646.28

Longest = 21954 tokens.

ares 522805

beer 4196

leaflet 305939

sres 134809

tedtalk 2150340

wc 93239

wine 3852

reference category : tedtalk

ares 409

beer 34

leaflet 289

sres 163

tedtalk 998

wc 31

wine 29

snippets = 27724

ares

beer

leaflet

sres

tedtalk

wc

wine

gram listing written on file C:\formulib\op\formtest_list.txt

gram dump written onto file C:\formulib\op\formtest_gram.dat

C:\formulib\p3\outgrams.py done on Tue May 31 16:47:25 2016

after 53.70358 seconds.

Most of this screen output is merely to reassure a user that the program is doing something. The
outputs that matter more are formtest_gram.txt and formtest_list.txt. A short edited extract from
formtest_gram.txt is listed below. This shows the first 16 and the last 10 entries for category ares
(UN General Assembly resolutions) followed by the first 13 entries (6-grams) for category beer (beer
bottle back-label texts).

ares 522805 3346191

Page 8 of 35

1 (6, 394, 42, ('resolution', 'adopted', 'by', 'the', 'general', 'assembly'))

2 (6, 356, 35, ('the', 'report', 'of', 'the', 'secretary', 'general'))

3 (6, 309, 34, ('adopted', 'by', 'the', 'general', 'assembly', 'on'))

4 (6, 303, 34, ('the', 'general', 'assembly', 'on', 'the', 'report'))

5 (6, 303, 33, ('general', 'assembly', 'on', 'the', 'report', 'of'))

6 (6, 303, 30, ('by', 'the', 'general', 'assembly', 'on', 'the'))

7 (6, 303, 29, ('assembly', 'on', 'the', 'report', 'of', 'the'))

8 (6, 297, 33, ('the', 'general', 'assembly', 'at', 'its', 'fifty'))

9 (6, 282, 30, ('to', 'the', 'general', 'assembly', 'at', 'its'))

10 (6, 223, 33, ('the', 'charter', 'of', 'the', 'united', 'nations'))

11 (6, 199, 31, ('of', 'the', 'secretary', 'general', 'on', 'the'))

12 (6, 193, 34, ('report', 'of', 'the', 'secretary', 'general', 'on'))

13 (6, 193, 26, ('for', 'the', 'period', 'from', '1', 'july'))

14 (6, 187, 30, ('of', 'the', 'report', 'of', 'the', 'secretary'))

15 (6, 183, 40, ('official', 'records', 'of', 'the', 'general', 'assembly'))

16 (6, 172, 36, ('to', 'include', 'in', 'the', 'provisional', 'agenda'))

[.... many lines omitted to save space]

71 (3, 215, 16, ('the', 'economic', 'and'))

72 (3, 215, 14, ('general', 'on', 'the'))

73 (3, 214, 17, ('convention', 'on', 'the'))

74 (3, 214, 11, ('with', 'a', 'view'))

75 (3, 212, 17, ('to', 'the', 'convention'))

76 (3, 212, 14, ('in', 'this', 'regard'))

77 (3, 211, 9, ('a', 'view', 'to'))

78 (3, 210, 22, ('assembly', 'recalling', 'its'))

79 (3, 210, 14, ('of', 'the', 'present'))

80 (3, 209, 18, ('and', 'social', 'council'))

beer 4196 25164

1 (6, 12, 35, ('avoid', 'alcohol', 'if', 'pregnant', 'or', 'trying'))

2 (6, 12, 33, ('if', 'pregnant', 'or', 'trying', 'to', 'conceive'))

3 (6, 12, 32, ('alcohol', 'if', 'pregnant', 'or', 'trying', 'to'))

4 (6, 8, 40, ('recommend', 'adults', 'do', 'not', 'regularly', 'exceed'))

5 (6, 8, 34, ('regularly', 'exceed', 'men', '4', 'units', 'daily'))

6 (6, 8, 34, ('adults', 'do', 'not', 'regularly', 'exceed', 'men'))

7 (6, 8, 32, ('not', 'regularly', 'exceed', 'men', '4', 'units'))

8 (6, 8, 31, ('units', 'daily', 'women', '3', 'units', 'daily'))

9 (6, 8, 30, ('exceed', 'men', '4', 'units', 'daily', 'women'))

10 (6, 8, 29, ('do', 'not', 'regularly', 'exceed', 'men', '4'))

11 (6, 8, 27, ('4', 'units', 'daily', 'women', '3', 'units'))

12 (6, 8, 25, ('men', '4', 'units', 'daily', 'women', '3'))

13 (6, 7, 42, ('uk', 'chief', 'medical', 'officers', 'recommend', 'adults'))

[.... even more lines omitted]

The first line, like other lines beginning with a hash sign ('#'), signals the start of data for a new
category of texts. The three items that follow the hash sign are the name of the category, the
number of tokens and the number of characters in that category. Here we see that category ares
(UN General Assembly resolutions) contains 522805 tokens (words or numbers) comprising 3346191
characters. The beer sample is much smaller: it contains 4196 tokens totalling 25164 characters. It
should be noted that these character counts are made after tokenization and include a single space
between each token.

The lines shown after the header lines contain the n-grams themselves. We requested 80 of each
size and used the sizes of 3 (shortest) and 6 (longest). Line 1 thus contains the most frequent 6-gram

"resolution adopted by the general assembly"

which occurs 394 times in the 409 files given as input and contains 42 characters (including the
spaces between words).

Page 9 of 35

The data from ares goes down to the 80th most frequent 3-gram ("and social council") which occurs
209 times. After that begins the data from the beer subsection of the bottlab files. Here the 2 most
frequent 6-grams are

"avoid alcohol if pregnant or trying"
and

"if pregnant or trying to conceive"

both of which occur 12 times.

This pair of items hints at one of the main problems with simple n-gram lists, namely that many n-
grams of a fixed size are obviously fragments of a longer sequence. In this case the repeated phrase
is happens to be an 8-gram

"avoid alcohol if pregnant or trying to conceive"

fragments of which will be found at n-gram sizes from 6 down to 3. (An essential objective of
formulex.py and the subsequent programs is to deal with exactly this problem, but description of
that will be postponed till the next section.)

This _gram.txt file is meant to be re-read easily by subsequent programs, so it isn't in a particularly
convenient format for humans. However, it is useful to be able to interpret its contents in case you
want to check the results on your data before proceeding further.

Slightly more readable is the _list.txt output file. Part of formtest_list.txt, generated by the example
above, is listed below.

Tue May 31 16:46:24 2016

parafile: C:\formulib\parapath\formtest.txt

metafile: c:\formulib\mets\training.txt

miniglen: 3

maxiglen: 6

topgrams: 80

dropsubs: 0

maxtops : 20

1953 7

Stop-word listing :

1 27413 the 98.88

2 26501 and 95.59

3 26093 of 94.12

4 26004 to 93.8

5 23680 in 85.41

6 23285 a 83.99

7 20499 that 73.94

8 17506 is 63.14

9 15803 this 57.0

10 15219 it 54.89

11 15171 for 54.72

12 14809 you 53.42

13 13609 on 49.09

14 13000 with 46.89

15 12277 i 44.28

16 12192 so 43.98

17 11337 have 40.89

18 11256 are 40.6

19 11207 we 40.42

20 10506 as 37.89

Page 10 of 35

n-grams by category :

ares 522805 tokens

1 3377 3 18 the united nations

2 2014 3 20 the general assembly

3 1989 3 21 the secretary general

4 1884 3 13 of the united

5 1873 4 21 of the united nations

6 1178 3 13 report of the

7 956 3 13 the report of

8 953 4 17 the report of the

9 885 4 24 the secretary general to

10 885 3 20 secretary general to

11 764 3 21 implementation of the

12 762 3 18 in accordance with

13 760 4 30 requests the secretary general

14 760 3 22 requests the secretary

15 738 3 21 the implementation of

16 690 3 10 as well as

17 635 3 14 by the general

18 629 5 33 requests the secretary general to

19 627 3 14 adopted by the

20 615 4 23 by the general assembly

21 589 3 16 of the secretary

22 585 4 24 of the secretary general

23 585 3 21 united nations system

24 576 4 25 the united nations system

[.... many lines omitted]

The first block of this listing gives a date-line and some parameter information. Miniglen and
maxiglen are the minimum and maximum n-gram lengths (2 and 5 by default).

The next block lists the stop-words used, 20 having been requested. These are compiled by taking
the whole input corpus and subdividing it into fixed-length chunks that I call 'snippets', with a default
snippet-size of 115 tokens. Then the percentage of snippets in which it occurs is found for each
token, and the tokens are sorted in descending order of this percentage. The first maxtops (here 20)
of these are then taken as stop-words. In the subsequent listing any n-gram consisting entirely of
stop-words will be ignored; otherwise they have no further effect, although they are listed for
reference. From this listing we can see that 'the' occurs in more than 98 percent of all snippets. At
position 20 'as' occurs in 37.89 percent of all snippets. In this case all 20 items are high-frequency
function words, common in most kinds of English. Of course a different selection of texts would
probably give a somewhat different collection of stop-words.

The next blocks show the actual n-grams for each category. Here the ordering is simply by
frequency, so n-grams of various sizes are intermixed. To save space only the first 24 lines from the
ares sample are shown here. From these we see that the first triplet "the united nations" (18
characters in length) occurs 3377 times in this category. At positions 7 and 8 we find that the 3-gram
"the report of" occurs 956 times while the 4-gram "the report of the" occurs 953 times, which
implies that only thrice out of 956 occasions did anything other than "the" follow "the report of" in
this corpus. Similarly, lines 9 and 10 show that the 3-gram "secretary general to" is always preceded
by "the".

Again, multiple fragments of what are presumably longer fixed phrases occur at various points, so
this listing, although it does convey a general impression of the key topics in each category, gives
only limited insight into how pervasive fixed formulaic sequences are in the texts concerned. That is
the task of the next program, formulex.py.

Page 11 of 35

Running formulex.py
When you execute this program, you should see something like the following output on screen.

C:\formulib\p3\formulex.py 1.5 Tue May 31 17:18:59 2016

command-line args. = 1

prepath : C:\formulib\p3

working folder: C:\formulib\p3

script usage: python C:\formulib\p3\formulex.py <parafile>

please give parameter file name : formtest

Paths to search for parameter file :

['C:\\formulib\\parapath', 'C:\\formulib\\p3', '..', '.',

'C:\\Users\\Richard.lounge-pc\\parapath', 'C:\\Users\\Richard.lounge-pc']

 formtest

trying to open : C:\formulib\parapath\formtest.txt

C:\formulib\parapath\formtest.txt opened for reading.

c:\formulib\mets\training.txt to be used to indicate training texts.

['prepath', 'filename', 'doctype']

1953

target column name : doctype @ 2

Text types : {'ares', 'tedtalk', 'beer', 'sres', 'wine', 'leaflet', 'wc'}

Number of texts = 1953

Number of tokens= 3215180

Shortest = 56 tokens.

median size = 1310

mean size = 1646.28

Longest = 21954 tokens.

ares 522805

beer 4196

leaflet 305939

sres 134809

tedtalk 2150340

wc 93239

wine 3852

reference category : tedtalk

ares 409

beer 34

leaflet 289

sres 163

tedtalk 998

wc 31

wine 29

snippets = 27724

N-grams to be read from C:\formulib\op\formtest_gram.dat :

2157

2150 n-grams read from C:\formulib\op\formtest_gram.dat

['prepath', 'filename', 'doctype']

1206

target column name : doctype @ 2

Number of test texts = 1206

Number of test tokens= 1989267

listing written onto file C:\formulib\op\formtest_food.txt

formdump written onto file C:\formulib\op\formtest_flab.dat

C:\formulib\p3\formulex.py done on Tue May 31 17:20:24 2016

after 81.28188 seconds.

Most of this is of only passing interest, but it is worth pointing out that this program has three main
input sources. One is the set of texts files specified by the trainmet parameter, which is normally the
same set as used to generate the n-gram file. The second is an n-gram file generated by
outgrams.py, normally from those texts specified in the metafile parameter. The third is optional,
but is present in this case as those texts specified in testing.txt, the value of the testmeta parameter.

The most important output from this run is the file formtest_food.txt, part of which is reproduced
below.

Page 12 of 35

Tue May 31 17:18:59 2016

parafile: C:\formulib\parapath\formtest.txt

metafile: c:\formulib\mets\training.txt

miniglen: 3

maxiglen: 6

topgrams: 80

1953 7

Category coverage% (characters, tokens) by frequent n-grams :

0 ares 15.7643 16.8610

1 beer 29.3236 29.1230

2 leaflet 13.0373 14.6248

3 sres 18.2463 19.1797

4 tedtalk 3.6273 4.7620

5 wc 5.0934 6.0962

6 wine 18.8720 18.7175

Document coverage% (characters, tokens) by frequent n-grams :

 1 983 160 60.87 60.00 beer saltaire_blonde.txt

 2 995 165 59.84 58.18 beer saltaire_cascade.txt

 3 1009 166 58.61 57.23 beer saltaire_pride.txt

 4 1011 166 58.40 54.82 ares A_RES_56_290-en.txt

 5 1042 164 57.43 57.93 ares A_RES_57_329-en.txt

 6 606 103 49.42 49.51 wine fabcab.txt

 7 526 85 47.25 49.41 beer low_alcohol_czech_lager.txt

 8 568 90 44.99 45.56 beer marstons_burton_bitter.txt

 9 1030 165 44.81 48.48 sres S_RES_14892003-en.txt

 10 913 163 44.31 39.88 ares A_RES_56_222-en.txt

 11 681 116 43.99 43.10 sres S_RES_13802001-en.txt

 12 543 90 43.93 44.44 beer corona_extra.txt

 13 1761 290 43.25 45.17 sres S_RES_15552004-en.txt

 14 525 96 42.78 41.67 wine long_slim_chile.txt

 15 2238 386 42.65 46.89 ares A_RES_55_259-en.txt

 16 551 89 42.57 41.57 beer marstons_double_drop.txt

 17 618 104 42.00 42.31 wine coop_chilean_merlot.txt

 18 718 118 41.72 40.68 sres S_RES_15052003-en.txt

 19 625 105 41.05 42.86 wine coop_shiraz_rose.txt

 20 823 139 41.02 41.01 sres S_RES_13942002-en.txt

 21 699 119 40.00 40.34 beer abbot_ale.txt

 22 1934 298 39.90 39.93 ares A_RES_56_238-en.txt

 23 1300 210 39.58 43.33 ares A_RES_56_234-en.txt

 24 1870 317 39.12 39.75 ares A_RES_57_313-en.txt

 25 1009 169 37.72 37.87 ares A_RES_56_512-en.txt

 26 841 136 37.17 41.91 wine coop_fairtrade_chenin_blanc.txt

 27 1786 281 37.05 37.72 ares A_RES_57_310-en.txt

 28 1463 244 36.61 35.66 ares A_RES_56_209-en.txt

 29 709 123 36.06 34.96 beer mcewans_amber.txt

 30 1097 177 35.97 35.59 ares A_RES_56_211-en.txt

 31 797 133 35.96 36.09 beer wychwood_goliath.txt

 32 2448 396 35.48 35.35 ares A_RES_56_233A-A_RES_56_233-en.txt

 33 2465 417 35.44 38.85 leaflet Ossopan_Granules.txt

 34 920 158 35.40 34.81 beer wychwood_golden_ale.txt

 35 1197 187 35.14 35.83 ares A_RES_55_229-en.txt

 36 1500 239 34.78 36.82 sres S_RES_14922003-en.txt

 37 2472 379 34.78 35.88 ares A_RES_56_46-en.txt

 38 1045 180 34.61 38.33 leaflet Persantin.txt

 39 985 157 34.38 34.39 ares A_RES_55_72-en.txt

 40 1964 327 34.05 32.42 ares A_RES_56_274A-A_RES_56_274-en.txt

[.... many lines omitted]

1941 8704 1265 0.80 1.19 leaflet Primacor.txt

1942 4102 709 0.78 0.85 tedtalk 1206PhilipZimbardo.txt

1943 15480 2838 0.76 0.99 tedtalk 0500C.K.Williams.txt

1944 10354 1543 0.73 1.04 leaflet Cordarone_X_Injection.txt

1945 14210 2879 0.70 0.83 tedtalk 1715JoshuaPrager.txt

1946 1845 321 0.54 0.93 tedtalk 1173MayaBeiser.txt

1947 2509 481 0.48 0.62 tedtalk 0814DerekSivers.txt

1948 9496 1637 0.41 0.55 tedtalk 1601GeorgetteMulheir.txt

1949 1919 355 0.00 0.00 tedtalk 1737MalcolmLondon.txt

1950 762 152 0.00 0.00 tedtalk 0988DavidByrne,Ethel+ThomasDolby.txt

1951 1496 289 0.00 0.00 tedtalk 0119Stew.txt

1952 794 155 0.00 0.00 tedtalk 0117NatalieMacMaster.txt

1953 463 80 0.00 0.00 wine oxford_landing_2011_merlot.txt

Page 13 of 35

:: Processing files from test metafile c:\formulib\mets\testing.txt :

Category coverage% (characters, tokens) by frequent n-grams :

0 ares 14.6338 15.6725

1 beer 20.3588 20.7117

2 leaflet 12.7932 14.2807

3 sres 15.6157 16.4139

4 tedtalk 3.5699 4.6923

5 wc 4.2501 5.0465

6 wine 15.5344 15.3014

Document coverage% (characters, tokens) by frequent n-grams :

 1 587 97 49.57 49.48 beer youngs_hummingbird.txt

 2 452 72 46.90 51.39 beer cumberland_corby_blonde.txt

 3 596 102 46.64 45.10 sres S_RES_13212000-en.txt

 4 925 152 46.16 43.42 ares A_RES_56_284-en.txt

 5 940 154 45.74 42.86 sres S_RES_15042003-en.txt

 6 962 151 45.32 46.36 ares A_RES_56_49-en.txt

 7 782 131 44.63 45.80 sres S_RES_14852003-en.txt

 8 2121 350 42.15 41.71 ares A_RES_56_233B-en.txt

 9 947 146 41.82 41.10 ares A_RES_56_276-en.txt

 10 593 100 41.15 41.00 beer wells_bombadier.txt

 11 1482 245 39.54 41.63 sres S_RES_13232000-en.txt

 12 1032 168 39.53 39.29 ares A_RES_56_273-en.txt

 13 1660 281 38.31 37.37 ares A_RES_55_244-en.txt

 14 1251 207 38.13 37.20 ares A_RES_56_230-en.txt

 15 1199 186 37.86 38.17 ares A_RES_56_270-en.txt

 16 2654 397 37.26 35.01 sres S_RES_14132002-en.txt

 17 657 105 36.99 33.33 wine one_tree_lake_shiraz.txt

 18 636 105 36.79 37.14 beer lancaster_blonde.txt

 19 717 111 35.70 38.74 wine coop_chianti_2013.txt

 20 1336 211 35.70 36.02 ares A_RES_56_42-en.txt

 21 3539 633 35.12 36.81 leaflet Cafergot_Tablets.txt

 22 1142 188 34.59 34.57 sres S_RES_12942000-en.txt

 23 667 106 34.03 33.02 sres S_RES_13472001-en.txt

 24 1486 244 33.38 32.79 ares A_RES_56_133-en.txt

 25 1338 217 33.18 32.72 ares A_RES_57_312-en.txt

 26 1093 177 33.12 34.46 sres S_RES_15572004-en.txt

 27 918 160 33.01 31.87 beer marstons_amber_ale.txt

 28 2522 416 32.59 32.45 ares A_RES_57_311-en.txt

 29 1674 251 32.56 33.47 ares A_RES_56_239-en.txt

 30 2095 334 32.17 31.14 ares A_RES_55_225B-en.txt

 31 716 122 32.12 31.15 sres S_RES_14882003-en.txt

 32 2254 347 32.08 33.72 ares A_RES_55_215-en.txt

 33 4148 612 31.70 30.72 sres S_RES_15632004-en.txt

 34 1376 220 31.69 33.18 ares A_RES_55_281-en.txt

 35 726 122 31.68 31.15 sres S_RES_13812001-en.txt

 36 2685 434 31.66 33.64 ares A_RES_55_220C-en.txt

 37 2143 326 31.45 32.21 ares A_RES_56_271-en.txt

 38 1270 205 31.42 30.73 ares A_RES_56_264-en.txt

 39 3372 573 31.35 33.68 leaflet Sanomigran_Tablets.txt

 40 2397 383 31.16 32.38 ares A_RES_56_95-en.txt

[.... many lines omitted]

1189 16344 2954 0.97 1.39 wc Savrola3.txt

1190 9193 1652 0.95 1.21 tedtalk 1019BartWeetjens.txt

1191 3409 643 0.94 0.93 tedtalk 1068SuheirHammad.txt

1192 13930 2441 0.88 1.31 tedtalk 1118DavidChristian.txt

1193 6710 1172 0.88 1.11 tedtalk 0524BenKatchor.txt

1194 3933 737 0.81 0.81 leaflet Serevent_Diskhaler.txt

1195 3529 676 0.77 0.89 tedtalk 0235SiegfriedWoldhek.txt

1196 1587 310 0.69 0.97 tedtalk 1500UsmanRiaz+PrestonReed.txt

1197 21034 3699 0.59 0.92 wc SpionKop.txt

1198 10231 1790 0.52 0.67 tedtalk 1476BeebanKidron.txt

1199 6198 946 0.45 0.63 leaflet Adenocor.txt

1200 6936 1135 0.20 0.26 leaflet Calciparine.txt

1201 1194 238 0.00 0.00 tedtalk 1740JohnLegend.txt

1202 618 109 0.00 0.00 tedtalk 1172OnyxAshanti.txt

1203 1191 229 0.00 0.00 tedtalk 0639ImogenHeap.txt

1204 530 106 0.00 0.00 tedtalk 0115RachelleGarniez.txt

1205 746 133 0.00 0.00 tedtalk 0099JillSobule.txt

1206 469 80 0.00 0.00 wine oxford_landing_2011_sauvignon_blanc.txt

N.B. category tedtalk used if class label previously unseen.

Page 14 of 35

This listing starts with a reminder of some of the more important parameter settings. Next comes a
listing showing the proportions of each text category covered by the frequent n-grams as well as the
proportion of each document covered in this way. Two percentages are given for each category or
document: first character coverage, then token coverage. This is a kind of self-test, since the texts
are being scored using the n-grams generated from themselves.

Next, if a testmeta parameter is specified, as is done here, the same information is given for the
texts in the test metafile. In this example there were 1953 text files in the training set and 1206 in
the test set. Only the 40 highest scoring and some low-scoring documents from both corpora are
shown above, to save space. The second ranking represents a genuine test, since the texts are being
processed by n-grams derived from a different group of documents, though with the same class
label.

The essential idea underlying this program is that the high-scoring items are highly repetitive and
therefore formulaic while the low-scoring items are less repetitive, thus less formulaic. Moreover we
can quantify this attribute as a percentage.

Taking the first 2 lines from the second part of the ranking (the holdout or testing subsample)

 1 587 97 49.57 49.48 beer youngs_hummingbird.txt

 2 452 72 46.90 51.39 beer cumberland_corby_blonde.txt

as an example, the output format is as follows. The first column is its rank (highest coverage by
frequent sequences). The next 2 columns give the number of characters and tokens in the
document. The next pair of numbers indicates the actual percentage covered, first in terms of
characters, then by tokens. The next 2 strings give the name of the files concerned, preceded by
their category label.

Thus the 2 texts most covered by frequent n-grams from their category were both from the beer
subcorpus. In terms of characters, 49.57% of the total length of the text of Youngs Hummingbird was
covered by frequent 3:6-grams; and 49.48% of the tokens were so covered.

At the foot of such a listing, items with zero coverage generally deserve further investigation. For
example, here one of the TED talks (0115 by Rachelle Garniez) turns out on inspection to be a song
in French with just a few English words of introduction. Anomaly detection of this kind can be useful
for various purposes.

How the program works
The basic idea behind this program is very simple. The trouble with n-gram lists is that they tend to
contain multiple fragments of longer sequences, losing track of what might be considered the
natural length of the sequences from which they are derived. So formulex.py tries to put them back
together by going back over the original texts to find out exactly which passages are covered by the
items in the frequent n-gram list. The key concept here is coverage. The important point is that a
text sequence is either covered or not: the number of n-grams that match a particular sequence of
tokens doesn't matter, just whether any do or none.

To give an illustration of the coverage process, let's suppose that you have gathered a corpus of
political propaganda in which the phrase

"securing a better future for hardworking families"

is repeated ad nauseam. (Yes, they do tend to write "hardworking" rather than "hard-working" or

Page 15 of 35

"hard working". I checked.)

This could be regarded as a frequent 7-gram, but with the system's default settings, the longest n-
grams to be saved would be 5-grams. Thus the n-gram list would probably include

"securing a better future for"
"a better future for hardworking"
"better future for hardworking families"

as well as shorter subsequences, probably going down to 2-grams such as "better future" and
"hardworking families". Suppose further that the program is processing the sentence tabulated
below (shown vertically, for convenience).

(word) token match count covering n-
gram(s):

we 0

are 0

committed 0

to 0

securing 1 securing

a 2 a a

better 3 better better better

future 3 future future future

for 3 for for for

hardworking 2 hardworking hardworking

families 1 families

throughout 0

britain 0

To keep things manageable, we've ignored the 4-, 3- and 2-grams, which might well increase the
totals in the column labelled "match count", but the main point is that 'coverage' will be determined
by whether this figure is greater than zero or not. The total number of matches isn't taken into
account for this purpose. (It could have value in certain contexts: see discussion of flicshow.py
below.)

Sticking just to these 13 words (87 characters, including single spaces between words) and three 5-
grams, the coverage would be 48/87 characters and 7/13 tokens, i.e. just the words that have a
nonzero entry next to them under "match count". This would appear as 55.17% and 53.85% in the
output. These two percentages tend to be highly correlated, meaning that similar conclusions are
likely to be drawn from either. I placed the character-coverage first, and used that as the primary
sort key, because I believe it is likely to be a slightly more sensitive indicator.

To summarize, the program works out coverage of tokens in this manner for each file separately
using the n-grams from the same category as the text concerned (or the largest category if the text
has an unseen class label) and also aggregates the coverage for each category. The texts are listed in
descending order of character coverage.

To return to the category coverage in the output above, the four categories ares, beer, leaflet, sres
and wine all have values over 12 percent. As expected, the UN resolutions, the bottle labels and the
drug leaflets are all rather repetitive. The less formulaic categories are TED talks and Winston
Churchill's writings (mostly speeches). These have character coverages between 3.56 and 4.25

Page 16 of 35

percent when 3:6-grams from the training subset are applied to the holdout sample.

The largest difference between self-test and holdout mode is in the beer category, but this is a
comparatively tiny corpus, so would be expected to show more variability.

Examining the formulexicon
As well as rating both texts and text categories by formulaic coverage, formulex.py produces another
output file (formtest_flab.txt in this example) which is intended to give a glimpse of what might be
regarded as the 'formulexicon' of each category. An extended extract from formtest_flab.txt follows.

[....]

2 leaflet 289 305939 1758713

 0.3122 323 16 3 tell your doctor

 0.2354 345 11 3 if you have

 0.2252 233 16 3 your doctor will

 0.2183 349 10 3 if you are

 0.2098 246 14 3 you are taking

 0.2083 229 15 3 your doctor may

 0.1825 107 29 5 ask your doctor or pharmacist

 0.1814 145 21 3 the active ingredient

 0.1660 139 20 3 taking your medicine

 0.1632 33 86 16 if you have any questions or are not sure about anything ask your

doctor or pharmacist

 0.1465 184 13 3 should not be

 0.1443 94 26 5 what you should know about

 0.1410 124 19 3 high blood pressure

 0.1361 63 37 8 is one of a group of medicines called

 0.1331 195 11 3 do not take

 0.1271 149 14 3 by your doctor

 0.1238 198 10 3 do not use

 0.1199 111 18 4 do you suffer from

 0.1183 130 15 3 the expiry date

 0.1164 16 127 26 remember this medicine is for you only a doctor can prescribe it for

you never give it to someone else it may harm them even if

 0.1154 70 28 6 out of the reach of children

 0.1138 69 28 4 tell your doctor immediately

 0.1035 10 181 33 please read this carefully before you start to take your medicine if

you have any questions or are not sure about anything ask your doctor or pharmacist the name

of your medicine is

 0.1026 41 43 8 in a safe place where children cannot reach

 0.1006 61 28 6 the name of your medicine is

 0.0979 123 13 3 used to treat

 0.0952 54 30 6 if your doctor decides to stop

 0.0938 110 14 3 you should not

 0.0917 26 61 13 it may harm them even if their symptoms are the same as yours

 0.0867 25 60 9 this leaflet does not contain the complete information about

 0.0843 19 77 15 if the answer to any of these questions is yes tell your doctor or

pharmacist

 0.0842 74 19 3 consult your doctor

 0.0836 98 14 3 to your doctor

 0.0819 96 14 3 are you taking

 0.0812 68 20 4 any of the following

 0.0812 51 27 4 before taking your medicine

 0.0810 89 15 3 your doctor has

 0.0799 19 73 12 please read this leaflet carefully before you start to take your

medicine

 0.0798 78 17 4 if you are taking

 0.0782 86 15 3 ask your doctor

 0.0778 37 36 7 tell your doctor as soon as possible

 0.0764 48 27 6 on the back of this leaflet

 0.0739 52 24 5 your doctor has told you

 0.0732 9 142 25 a summary of the information available on your medicine if you have

any questions or are not sure about anything ask your doctor or pharmacist

 0.0723 41 30 5 tell your doctor or pharmacist

 0.0719 79 15 3 it is important

 0.0717 97 12 3 any of these

 0.0702 65 18 4 it is important to

 0.0701 112 10 3 you do not

 0.0675 54 21 4 to take your medicine

 0.0657 68 16 4 is used to treat

 0.0648 95 11 3 do you have

 0.0648 57 19 5 if you are not sure

Page 17 of 35

 0.0619 64 16 3 this medicine is

 0.0606 41 25 4 your doctor or pharmacist

 0.0605 38 27 6 if your doctor tells you to

 0.0604 9 117 24 if your doctor tells you to remember this medicine is for you only a

doctor can prescribe it for you never give it to

 0.0600 44 23 5 as soon as you remember

 0.0597 42 24 5 your doctor tells you to

 0.0587 43 23 5 tell your doctor if you

 0.0555 61 15 4 if you have any

 0.0541 34 27 5 a group of medicines called

 0.0523 40 22 4 check with your doctor

 0.0520 15 60 14 if you forget to take a dose take it as soon as you remember

 0.0509 14 63 14 for you only a doctor can prescribe it for you never give it to

 0.0503 52 16 3 with your doctor

 0.0489 43 19 4 as soon as possible

 0.0478 35 23 3 your doctor immediately

 0.0474 49 16 3 your medicine is

 0.0474 7 118 20 information about your medicine if you have any questions or are not

sure about anything ask your doctor or pharmacist

 0.0471 46 17 3 reach of children

 0.0469 5 164 33 remember this medicine is for you only a doctor can prescribe it for

you never give it to someone else it may harm them even if their symptoms are the same as

yours

 0.0461 9 89 18 remember this medicine is for you only a doctor can prescribe it for

you never give it to

 0.0445 29 26 6 it as soon as you remember

 0.0445 27 28 5 to your doctor or pharmacist

 0.0444 39 19 4 if you are pregnant

 0.0430 3 251 49 if you have any questions or are not sure about anything ask your

doctor or pharmacist remember this medicine is for you only a doctor can prescribe it for you

never give it to someone else it may harm them even if their symptoms are the same as yours

 0.0428 47 15 3 you suffer from

 0.0422 53 13 4 to any of the

 0.0407 5 142 27 or are not sure about anything ask your doctor or pharmacist remember

this medicine is for you only a doctor can prescribe it never give it to

3 sres 163 134809 851798

 0.4001 71 47 8 decides to remain actively seized of the matter

 0.2967 133 18 3 in accordance with

 0.2914 73 33 5 requests the secretary general to

 0.2744 123 18 3 the united nations

 0.2614 17 130 20 the relevant principles contained in the convention on the safety of

united nations and associated personnel adopted on 9 december

 0.2454 95 21 4 of the united nations

 0.2219 105 17 3 the importance of

 0.2184 124 14 3 the parties to

 0.2170 42 43 8 2002 adopted by the security council at its

 0.2134 101 17 3 the government of

 0.2120 86 20 3 the security council

 0.1956 119 13 3 th meeting on

 0.1860 36 43 8 2004 adopted by the security council at its

 0.1860 36 43 8 2003 adopted by the security council at its

 0.1834 71 21 3 the secretary general

 0.1831 40 38 7 decides to remain seized of the matter

 0.1831 39 39 7 of the democratic republic of the congo

 0.1807 27 56 9 having considered the report of the secretary general of

 0.1740 57 25 4 the implementation of the

 0.1648 36 38 7 the report of the secretary general of

 0.1566 23 57 7 the security council reaffirming its previous resolutions

 0.1550 88 14 3 in this regard

 0.1550 30 43 8 2001 adopted by the security council at its

 0.1545 28 46 6 the security council recalling its resolutions

 0.1472 57 21 3 the implementation of

 0.1409 30 39 7 in the democratic republic of the congo

 0.1362 29 39 7 the date of adoption of this resolution

 0.1323 23 48 6 the committee established pursuant to resolution

 0.1317 66 16 3 member states to

 0.1313 43 25 4 the government of lebanon

 0.1310 62 17 3 in particular the

 0.1266 49 21 4 by the united nations

 0.1240 96 10 3 as well as

 0.1233 42 24 4 referred to in paragraph

 0.1212 43 23 3 the secretary general's

 0.1136 22 43 8 of the democratic republic of the congo and

 0.1127 40 23 4 of the security council

 0.1124 29 32 6 decides to extend the mandate of

 0.1115 25 37 6 the president of the security council

 0.1107 41 22 4 in accordance with the

Page 18 of 35

 0.1085 66 13 3 to ensure the

 0.1080 10 91 13 the security council recalling its previous resolutions and the

statements of its president

 0.1078 54 16 3 the situation in

 0.1059 22 40 6 requests the secretary general to submit

 0.1038 17 51 7 the special representative of the secretary general

 0.1019 28 30 5 the government of sierra leone

 0.1014 54 15 3 support for the

 0.0986 30 27 4 adoption of this resolution

 0.0983 31 26 5 its strong support for the

 0.0981 38 21 3 implementation of the

 0.0944 67 11 3 in order to

 0.0939 32 24 4 the secretary general to

 0.0930 18 43 5 the international security assistance force

 0.0916 30 25 4 in bosnia and herzegovina

 0.0916 30 25 3 the committee established

 0.0904 11 69 12 acting under chapter vii of the charter of the united nations decides

 0.0898 51 14 3 to continue to

 0.0873 12 61 11 acting under chapter vii of the charter of the united nations

 0.0870 19 38 7 adopted by the security council at its

 0.0863 49 14 3 to the council

 0.0852 22 32 4 international peace and security

 0.0839 65 10 3 set out in

 0.0839 13 54 8 the president of the international tribunal for rwanda

 0.0838 21 33 5 the measures imposed by paragraph

 0.0818 17 40 6 of the international tribunal for rwanda

 0.0817 29 23 4 the measures imposed by

 0.0817 12 57 8 permanent judges of the international tribunal for rwanda

 0.0808 8 85 13 the implementation of the peace agreement and the situation in bosnia

and herzegovina

 0.0805 49 13 3 in the region

 0.0789 32 20 3 of the international

 0.0778 17 38 6 the security council recalling all its

 0.0764 21 30 4 the secretary general's report

 0.0761 36 17 3 the peace process

 0.0758 19 33 6 the statement of its president of

 0.0758 19 33 5 determining that the situation in

 0.0757 43 14 4 as well as the

 0.0738 17 36 7 of the charter of the united nations

 0.0729 27 22 3 bosnia and herzegovina

 0.0723 22 27 5 to cooperate fully with the

 0.0710 5 120 21 a threat to international peace and security in the region acting

under chapter vii of the charter of the united nations

4 tedtalk 998 2150340 11526504

 0.0866 1109 8 3 a lot of

 0.0766 465 18 3 thank you applause

 0.0691 613 12 3 in the world

 0.0624 654 10 3 one of the

 0.0509 391 14 3 we're going to

 0.0475 322 16 3 around the world

 0.0464 486 10 3 we need to

 0.0453 180 28 5 thank you very much applause

 0.0444 394 12 3 i'm going to

 0.0429 494 9 3 i want to

 0.0427 410 11 3 and i think

 0.0411 395 11 3 some of the

 0.0407 313 14 3 percent of the

 0.0387 343 12 3 a little bit

 0.0369 354 11 3 part of the

 0.0357 343 11 3 you can see

 0.0331 347 10 3 out of the

 0.0328 315 11 3 a couple of

 0.0325 312 11 3 in order to

 0.0323 233 15 3 you're going to

 0.0321 264 13 3 the fact that

 0.0311 299 11 3 that we can

 0.0310 357 9 3 and i was

 0.0309 274 12 3 this is what

 0.0307 272 12 3 i don't know

 0.0305 293 11 3 there was a

 0.0298 286 11 3 look at the

 0.0295 162 20 4 in the united states

 0.0292 280 11 3 in terms of

 0.0285 299 10 3 when i was

 0.0283 272 11 3 i wanted to

 0.0283 233 13 3 and of course

 0.0283 181 17 3 the united states

Page 19 of 35

 0.0282 296 10 3 be able to

 0.0282 295 10 3 there is a

 0.0276 245 12 3 this kind of

 0.0273 286 10 3 and it was

 0.0267 237 12 3 of the world

 0.0262 275 10 3 all of the

 0.0255 196 14 3 to think about

 0.0254 244 11 3 and you can

 0.0253 324 8 3 it was a

 0.0250 222 12 3 that you can

 0.0250 240 11 3 you want to

 0.0248 260 10 3 we want to

 0.0241 278 9 3 a kind of

 0.0238 229 11 3 back to the

 0.0238 249 10 3 and i said

 0.0237 228 11 3 is going to

 0.0234 245 10 3 and if you

 0.0227 238 10 3 and a half

 0.0214 224 10 3 to do with

 0.0213 189 12 3 are going to

 0.0210 202 11 3 going to be

 0.0210 121 19 4 thank you very much

 0.0209 142 16 4 at the same time

 0.0209 127 18 4 for the first time

 0.0197 284 7 3 to be a

 0.0196 161 13 4 to be able to

 0.0194 140 15 4 a little bit of

 0.0180 173 11 3 i'd like to

 0.0178 187 10 3 by the way

 0.0177 146 13 3 it's going to

 0.0171 152 12 3 not going to

 0.0169 150 12 3 i think that

 0.0169 130 14 4 if you want to

 0.0166 137 13 3 to talk about

 0.0158 114 15 4 a lot of people

 0.0157 113 15 4 one of the most

 0.0156 100 17 4 it turns out that

 0.0155 137 12 3 it turns out

 0.0153 126 13 3 in the middle

 0.0151 109 15 4 and you can see

 0.0151 193 8 3 to do it

 0.0148 90 18 4 all over the world

 0.0147 89 18 5 if you look at the

 0.0144 208 7 3 the u s

 0.0136 112 13 4 i want you to

 0.0131 89 16 4 and this is what

 0.0131 89 16 4 and i'm going to

5 wc 31 93239 519204

 0.0832 24 17 3 the united states

 0.0768 21 18 3 the prime minister

 0.0740 16 23 4 the right hon gentleman

 0.0722 15 24 3 his majesty's government

 0.0651 26 12 3 of the world

 0.0624 36 8 3 i do not

 0.0578 20 14 3 of the british

 0.0576 13 22 3 the conservative party

 0.0539 14 19 4 at the present time

 0.0508 22 11 3 there is no

 0.0501 20 12 3 in the world

 0.0482 25 9 3 it is not

 0.0468 9 26 4 the committee of ministers

 0.0462 16 14 3 that we should

 0.0462 15 15 3 would have been

 0.0462 15 15 3 in this country

 0.0458 17 13 3 which we have

 0.0451 13 17 3 of the government

 0.0447 8 28 5 the leader of the opposition

 0.0445 21 10 3 of all the

 0.0439 19 11 3 at any rate

 0.0439 12 18 4 the house of lords

 0.0433 15 14 3 in the country

 0.0416 9 23 5 of the house of commons

 0.0403 19 10 3 be able to

 0.0401 13 15 3 in south africa

 0.0376 15 12 3 of the house

 0.0364 9 20 4 of the united states

 0.0360 17 10 3 one of the

Page 20 of 35

 0.0351 14 12 3 which we are

 0.0347 15 11 3 will not be

 0.0347 15 11 3 what is the

 0.0347 15 11 3 it would be

 0.0347 15 11 3 in order to

 0.0347 12 14 3 of the country

 0.0339 11 15 4 in spite of the

 0.0339 8 21 4 of the united nations

 0.0337 7 24 4 great britain and france

 0.0325 13 12 3 we have been

 0.0324 14 11 3 in the last

 [....]

This extract shows all 80 of the sequences produced from three of the text types: the patient leaflets
(leaflet), the UN Security Council data (sres) and the TED transcripts (tedtalk), followed by the first
40 items from the Churchill sample (wc). The contrast between highly stylized writing and spoken
discourse (albeit largely rehearsed) emerges rather forcefully. In addition, it serves to introduce the
notion that the system can find what I call 'collocades', i.e. chains or cascades of collocations.

Each group of data lines is preceded by a 1-line header such as

2 leaflet 289 305939 1758713

which indicates that category number 2 is the patient leaflets consisting of 289 files containing
305939 tokens amounting to a total of 1758713 characters. Then come the sequences themselves.
For example, in the sres group

 0.1825 107 29 5 ask your doctor or pharmacist

comes in 7th place, while

 0.1632 33 86 16 if you have any questions or are not sure about anything

ask your doctor or pharmacist

comes in tenth place.

Here we have a pair of sequences that are clearly related, a 5-gram that also appears as a segment
of a 16-gram. Their relationship may not be obvious, but can be elucidated from the figures given.

The numbers 0.1825 and 0.1632 are percentages. They indicate that 0.1825 percent of the entire
1758713 characters in the leaflet corpus consists of repetitions of the phrase "ask your doctor or
pharmacist", which occurs 107 times and is 29 characters long. However, the figure of 107
occurrences only refers to those occurrences of this 5-gram that are not included within a longer
sequence. Specifically, that excludes the 33 occurrences within the 16-gram "if you have any
questions or are not sure about anything ask your doctor or pharmacist". As it happens, the
_gram.dat output file shows that the 5-gram "ask your doctor or pharmacist" occurs 319 times
altogether in this sample of 289 leaflets, ignoring whether or not it is part of a longer collocade. In
the listing above this particular 5-gram can be found as part of 6 other collocades in this list, though
the total of their occurrences do not add to 319, implying that it appears in other contexts, albeit
less frequently.

Similar remarks apply to sequences such as

 0.2120 86 20 3 the security council

 [....]

 0.1860 36 43 8 2004 adopted by the security council at its

 0.1860 36 43 8 2003 adopted by the security council at its

 [....]

 0.1566 23 57 7 the security council reaffirming its previous resolutions

 [....]

Page 21 of 35

 0.1550 30 43 8 2001 adopted by the security council at its

 0.1545 28 46 6 the security council recalling its resolutions

from the sres subcorpus. These lines, in effect, show the most common contexts of the sequence
"the security council" (which, ignoring context, occurs as a 3-gram 508 times, as can be found from
the _gram.dat file).

I have considered writing a program to collate such linked sequences, but in the general case that
would be tricky and more appropriate in a concordance package, so at present this listing can be
regarded as pointing to what sequences to examine using a conventional concordance program.

As for formulaic language, it certainly identifies some prefabricated phrases. Taking only the first-
ranked item from the sres corpus

0.4001 71 47 8 decides to remain actively seized of the matter

we find an 8-gram that covers more than 0.4 percent of the whole corpus. If that isn't a formulaic
phrase, I don't know what is! The figures show that this sequence comprising 47 characters or 8
tokens occurred 71 times. It might seem that 0.4001 percent is quite a small number, but if you look
further down the list you'll see that such a common phrase as "as well as" only accounts for 0.1240
percent of the characters in this text type; and, for instance, in the Churchill sample (wc) "one of
the" accounts for 0.0360 percent. So for an 8-gram to take as much as 0.4001 percent of the text in a
corpus is quite a feat.

The longest of these Security Council sequences is a 21-gram "a threat to international peace and
security in the region acting under chapter vii of the charter of the united nations" which occurs 5
times accounting for 0.0710 percent of the entire corpus. This is a good example what I call a
'collocade', several collocated subsequences which happen to be consecutive. A look at the n-gram
list suggests it can be broken down as "a threat to international peace and security" + "in the region"
+ "acting under chapter vii of the charter of the united nations".

The way of counting employed by formulex.py can take some getting used to, but it does mean that
the sequences shown are mutually exclusive. It also prevents longer prefabricated phrases from
being swamped by the elements of which they are composed, which is an important objective of this
software.

The tedtalk category presents a sharp contrast. All but 2 of its 80 high-ranking sequences are 3-
grams or 4-grams. Short markers of spoken language abound, such as "a lot of", "a kind of" and "i'm
going to". (The last could perhaps have been represented as a pair, "i'm gonna", with a less formal
transcription convention.) Even one of the 5-grams, "thank you very much applause", is artificially
inflated by one token as a result of a particular transcription convention. (The other 5-gram is "if you
look at the".) This is a generic corpus covering a wide variety of topics, so even after forbidding n-
grams entirely composed entirely of stop-words we're left with very basic short chunks of syntax. In
contrast with the UN sequences, no obvious topic focus can be discerned.

Running flicshow.py
After examining a list of high-frequency sequences of various lengths, including collocades, it is
natural to wonder not just how often they occur, but where. A conventional KWIC (Keyword in
Context) listing doesn't really answer this need, so I have written flicshow.py to offer an alternative
approach.

The main input parameter for flicshow.py is metaflic, which specifies a metafile giving the text files

Page 22 of 35

to be processed. The other parameters are typically the same as for formulex.py. This program also
uses the n-gram file produced by outgrams.py.

The program processes each of the files specified by metaflic using the same mode of calculating
coverage as in formulex.py. It places them in a subdirectory called html of whichever output folder
has been specified by the outpath parameter. These output files are in html and should be viewed
with a browser such as Mozilla Firefox or Microsoft Edge.

In these output files the portions covered by the n-grams of the relevant category (i.e. the category
of the text being processed, or the largest category if it has an unknown label) are highlighted by
being colour-coded, while the rest of the text is printed in black. The html file for Artesian Dark Ale
from the beer subcorpus is reproduced below. This comes from the holdout sample, i.e. was not part
of the collection used to create the n-gram file.

artesian dark ale see amber smell fruity spicy hoppy taste fruity biscuit malt spice this delicious ale is
hand crafted using chalk filtered mineral water from the artesian well deep below our brewery
amber in colour it is a complex full flavoured beer combining aromas of fruits and spices with rich
biscuity malts drink responsibly

uk chief medical officers recommend men do not regularly exceed 4 units daily
and women 3 units daily drinkaware co uk
for the facts 1.9 uk units brewed bottled by shepherd neame ltd faversham kent me13_7ax england

contains barley malt
ingredients water barley hops and malt

return for refund where applicable product of england
10 cent refund at collection depots when sold in south australia standard drinks 1.5 beer

500 ml alcohol
3.8 percent volume brewed bottled by shepherd neame ltd faversham kent me13_7ax england

best before end see neck of bottle allergy advice contains barley malt
gluten www shepherdneame co uk

The colour scheme used by flicshow.py is as follows.

Coverage score Colour

6+ purple

5 red

4 orange

3 green

2 blue

1 cyan

0 black

The coverage score for each token, and hence its colour, can be computed in 2 ways, depending on
the value of the parameter huemode. If huemode is 0, it will be the size of the longest n-gram of the
category concerned in the gramdat file that covers that particular token. If huemode is 1, the score
will be the sum total of n-grams, of any size, from the _gram.dat file that covers that token.
Huemode 0, the default, is used in all he examples shown here.

The way this operates can be illustrated by the penultimate line above

best before end see neck of bottle allergy advice contains barley malt

Page 23 of 35

which is a collocade that starts with a 5-gram in red, but then has 2 tokens in orange, followed by
five more in green. Orange is used for a score of four, so it might seem strange that only 2 tokens are
in orange: the reason is that "see neck of bottle" is a frequent 4-gram but "best before end see neck"
is in the top 80 5-grams and each token gets the score associated with the longest n-gram that
applies to it. Thus "see neck" receives a higher score than "of bottle". Conversely, the 5 tokens in
"allergy advice contains barley malt" appear in green, appropriate to a score of 3 because each of
these five tokens is covered by no n-gram longer than 3, such as "allergy advice contains" and
"contains barley malt".

This multiple colouration of collocades might almost be considered a kind of parsing: it hints at the
way the phrases are prefabricated.

Although the Artesian Dark Ale file was not part of the 'training data', its colouring illustrates a
relatively high degree of coverage by formulaic sequences (29.23% by characters, 29.94% by tokens).
An even higher level of coverage (35.12% and 36.81%) is illustrated by the Cafergot text from the
patient leaflet test sample, below.

what you should know about
cafergot tablets

please read this carefully before you start to take your medicine
even

if you have
taken cafergot before

if you have any questions or are not sure about anything ask your doctor or
pharmacist
chemist

the name of your medicine is
cafergot ergotamine with caffeine it should be taken at the start of a migraine attach to relieve the
symptoms and stop the attack getting worse things to remember about cafergot make sure at is safe
for you to take cafergot see inside leaflet

take your medicine
exactly as

your doctor tells you
remember to keep a record of how many tablets you take in a day and in a week

do not take
cafergot every day it

you start to take
any other medicine make sure

your doctor or pharmacist
knows cafergot can sometimes cause side effects you can find these listed inside this leaflet keep
your medicine away from children you will find more about your tablets inside this leaflet

your medicine is
called cafergot the ergotamine in this medicine affects the tension of the blood vessels causing your
migraine attack your tablets also contain caffeine this helps the ergotamine to be absorbed into the
body more quickly so you get quicker relief from your migraine

before taking your medicine do not take
cafergot

Page 24 of 35

if you are pregnant
or become pregnant

or if you are
breast feeding a baby

tell your doctor or pharmacist if you suffer from any of the following
kidney or liver disease circulation or heart problems

or if you are taking
medicine for

high blood pressure taking your medicine it is important to take your medicine
correctly take only the amount directed

by your doctor
the label will tell you how much to take and how often if it doesn't or

you are not sure ask your doctor or pharmacist
remove the tablet from the foil as shown in the picture always take the tablets with water and
swallow them whole

it is important to
keep a record of how many tablets you take

you should not
use more than 4 tablets in 24 hours

do not take
cafergot every day leave a gap of at least 4 days before taking a further dose

you should not
use more than 8 tablets in a week

if you are not
getting relief from your migraine

do not take
more tablets

tell your doctor if you
find your headaches occur more often

tell your doctor
overdose if you accidentally take too much of your medicine

tell your doctor immediately
or go to your nearest casualty department after

taking your medicine
there is no need to worry if you develop an upset stomach but

tell your doctor
at your next visit if you develop numbness or tingling in your fingers or toes

tell your doctor immediately
storing your medicine keep your tablets

in a safe place where children cannot reach
them your tablets could harm them it

your doctor decides to stop
your treatment return any leftover medicine to the pharmacist only keep them

if your doctor tells you to
what's in your medicine cafergot tablets are round and white each one contains 1 mg ergotamine
tartrate and 100 mg caffeine further information

Page 25 of 35

remember this medicine is for you only a doctor can prescribe it for you never
give it to
anyone

else it may harm them even if their symptoms are the same as yours this leaflet
does not contain
complete

information about your medicine if you have any questions or are
unsure

about anything ask your
pharmacist cafergot is a registered trade mark sandoz pharmaceuticals frimley business park frimley
camberley surrey gu16 5 sg pl 0101 5 c23r sandoz products ireland limited airton road tallaght dublin
24 pa 13 5 1

By contrast, TED talk 1716, which also was absent from the examples used to generate the n-gram
file, shows a much lesser degree of coverage.

when i was
14 years old i had low self esteem i felt i was not talented at anything one day i bought a yo yo when
i tried my first trick it looked like this i couldn't even do the simplest trick but it was very natural for
me because i was not dextrous and hated all sports but after one week of practicing my throws
became more like this a bit better i thought the yo yo is something for me to be good at

for the first time in
my life i found my passion i was spending all my time practicing it took me hours and hours a day to
build my skills up to the next level and then four years later

when i was
18 years old i was standing onstage at the world yo yo contest and i won i was so excited yes i did it i
became a hero i may get many sponsors

a lot of
money tons of interviews and be on tv i thought laughter but after coming back to japan totally
nothing changed in my life i realized society didn't value my passion so i went back to my college and
became a typical japanese worker as a systems engineer i felt my passion heart and soul had left my
body i felt i was not alive anymore so i started to consider what i should do and i thought

i wanted to
make my performance better and to show onstage how spectacular the yo yo could be to change
the public's image of the yo yo so i quit my company and started a career as a professional
performer i started to learn classic ballet jazz dance acrobatics and other things to make my
performance better as a result of these efforts and the help of many others it happened i won the
world yo yo contest again in the artistic performance division i passed an audition for cirque du soleil
today i am standing on the ted stage with the yo yo in front of you applause what i learned from the
yo yo is if i make enough effort with huge passion there is no impossible could you let me share my
passion with you through my performance applause water sounds music applause music music
applause applause music applause applause music applause

It is easy to see at a glance that this file contains large sections in black that are not covered by the
frequent n-grams, while the highlighted chunks are short and mostly content-free. In fact only 3.27%
(by characters) or 4.27% (by tokens) of this text are covered by the most frequent n-grams in
tedtalks.

Page 26 of 35

Running taverns.py (Textual Affinity Values Employing Repeated N-gram Sequences)
Inspecting individual texts can be a valuable opportunity to get close to the data, but in a typical
corpus there is a huge amount of data to be inspected. The program taverns.py works in bulk mode
and thereby gives an indication of which particular files might deserve the kind of close attention
given to the output of flicshow.py. It goes a step further than formulex.py, using the same method,
by computing coverage of each text specified in the testmeta file not only by the n-grams of its own
category, but by those of all the categories in the n-gram file. Thus, in effect, it ranks each text file
according to how typical it is of each category, including its own.

In addition, having done this, it performs text classification by assigning each text to the category
giving it the highest coverage score. It is not intended primarily as a text classifier, but the results in
classification often shed light on the relationships between the text types involved. In particular, it is
sometimes interesting to see how texts from outside the classes used to form the n-gram dictionary
are classified.

Its main output file is the _ales.txt file (Affinity Listing Employing Sequences). The initial portion of
this file generated by using the formtest parameter file follows below.

Wed Jun 1 14:12:19 2016

parafile: C:\formulib\parapath\formtest.txt

gramfile: ..\op\formtest_gram.dat

testmeta: c:\formulib\mets\testing.txt

miniglen: 3

maxiglen: 6

topgrams: 80

contrast: 0

1206 7

Ranking by coverage of sequences from ares

 1 925 152 46.16 43.42 ares A_RES_56_284-en.txt

 2 962 151 45.32 46.36 ares A_RES_56_49-en.txt

 3 2121 350 42.15 41.71 ares A_RES_56_233B-en.txt

 4 947 146 41.82 41.10 ares A_RES_56_276-en.txt

 5 1032 168 39.53 39.29 ares A_RES_56_273-en.txt

 6 1660 281 38.31 37.37 ares A_RES_55_244-en.txt

 7 1251 207 38.13 37.20 ares A_RES_56_230-en.txt

 8 1199 186 37.86 38.17 ares A_RES_56_270-en.txt

 9 1336 211 35.70 36.02 ares A_RES_56_42-en.txt

 10 1486 244 33.38 32.79 ares A_RES_56_133-en.txt

 11 1338 217 33.18 32.72 ares A_RES_57_312-en.txt

 12 2522 416 32.59 32.45 ares A_RES_57_311-en.txt

 13 1674 251 32.56 33.47 ares A_RES_56_239-en.txt

 14 2095 334 32.17 31.14 ares A_RES_55_225B-en.txt

 15 2254 347 32.08 33.72 ares A_RES_55_215-en.txt

 16 1376 220 31.69 33.18 ares A_RES_55_281-en.txt

 17 2685 434 31.66 33.64 ares A_RES_55_220C-en.txt

 18 2143 326 31.45 32.21 ares A_RES_56_271-en.txt

 19 1270 205 31.42 30.73 ares A_RES_56_264-en.txt

 20 2397 383 31.16 32.38 ares A_RES_56_95-en.txt

Here the format is the same as with formulex.py, but it should be noted that percentage coverage of
is not being computed for each file by reference to its own n-gram list but, in this section, all
coverage scores are computed by reference to the ares n-grams. Nevertheless, all the top 20 are
from the ares category. (The highest of another category, a Security Council resolution, comes at
rank 75.)

By contrast, the last 30 entries in this ranking are files that have essentially nothing in common with
the General Assembly resolutions: none of the General Assembly (ares) n-grams match anywhere in
them.

1177 1528 251 0.00 0.00 wine alta_vista_premium_2011.txt

1178 659 113 0.00 0.00 wine 2011_old_man_creek.txt

Page 27 of 35

1179 587 97 0.00 0.00 beer youngs_hummingbird.txt

1180 766 128 0.00 0.00 beer wentworth_imperial_ale.txt

1181 593 100 0.00 0.00 beer wells_bombadier.txt

1182 1049 174 0.00 0.00 beer tribute_cornish_pale_ale.txt

1183 652 107 0.00 0.00 beer timothy_taylors_landlord.txt

1184 861 148 0.00 0.00 beer theakston_lightfoot.txt

1185 1101 186 0.00 0.00 beer spitfire.txt

1186 1238 195 0.00 0.00 beer samuelsmiths_organic_fruitbeer.txt

1187 730 118 0.00 0.00 beer samuel_adams_boston_lager.txt

1188 621 102 0.00 0.00 beer sainte_etienne_lager.txt

1189 416 67 0.00 0.00 beer marstons_english_pale_ale.txt

1190 918 160 0.00 0.00 beer marstons_amber_ale.txt

1191 636 105 0.00 0.00 beer lancaster_blonde.txt

1192 483 82 0.00 0.00 beer greens_supreme_golden_ale.txt

1193 543 88 0.00 0.00 beer golden_pippin.txt

1194 704 110 0.00 0.00 beer flying_scotsman.txt

1195 452 72 0.00 0.00 beer cumberland_corby_blonde.txt

1196 1002 156 0.00 0.00 beer coop_czech_lager.txt

1197 756 129 0.00 0.00 beer castle_rock_harvest_pale.txt

1198 1015 167 0.00 0.00 beer caledonian_flying_scotsman.txt

1199 822 134 0.00 0.00 beer bud_strong.txt

1200 997 173 0.00 0.00 beer boadicea_golden_ale.txt

1201 743 129 0.00 0.00 beer bass_trademark_no1.txt

1202 566 91 0.00 0.00 beer banks_bitter.txt

1203 836 145 0.00 0.00 beer badger_tangle_foot.txt

1204 958 157 0.00 0.00 beer artesian_darkale.txt

1205 483 86 0.00 0.00 beer adnams_ghost_ship.txt

1206 1099 191 0.00 0.00 beer 9hop_kent_pale_ale.txt

ares mean rank = 159.73

beer mean rank = 1192.5

leaflet mean rank = 861.78

sres mean rank = 311.9

tedtalk mean rank = 763.59

wc mean rank = 574.38

wine mean rank = 1167.5

Also printed at the foot of each category's ranking list are the average ranks for all input categories.
This gives a rough index of dissimilarity between groups. It shows that ares is indeed the closest
category to itself, and that sres is also relatively close, as might be expected. The categories most
distant from ares are beer and wine bottle labels and patient information leaflets.

There are seven blocks of ranked lists in this format, one for each n-gram category, which will not be
reproduced here. (The full 9774 lines of output can be seen in the file formtest_ales.txt on the op
subfolder.)

After these the results of using the method in classification mode are appended. This is shown
below, with a large chunk from the middle omitted to save space.

Results in classification mode :

 relative actual categories

rank coverage% coverage% pred : true docname

 1 100.00 20.86 leaflet + leaflet Metrogel.txt

 2 100.00 18.61 leaflet + leaflet Proctosedyl_Suppositories.txt

 3 100.00 16.22 leaflet + leaflet Fucidin_Cream.txt

 4 100.00 13.57 leaflet + leaflet Levophed_Injection.txt

 5 100.00 13.30 wine + wine coop_explorers_vineyard.txt

 6 100.00 9.06 beer + beer theakston_lightfoot.txt

 7 100.00 8.80 tedtalk + tedtalk 1083AhnTrio.txt

 8 100.00 7.67 beer + beer flying_scotsman.txt

 9 100.00 4.82 wine + wine ferreira_port_tawny.txt

 10 100.00 3.90 tedtalk + tedtalk 0325NellieMcKay.txt

 11 100.00 3.47 tedtalk + tedtalk 0296NellieMcKay.txt

 12 100.00 3.02 tedtalk + tedtalk 1508GabrielBarcia-Colombo.txt

 13 100.00 2.73 tedtalk + tedtalk 0383Rives.txt

 14 100.00 2.12 tedtalk + tedtalk 0109EddiReader.txt

 15 100.00 1.58 tedtalk + tedtalk 0287NellieMcKay.txt

 16 100.00 1.46 tedtalk + tedtalk 0551CarolynPorco.txt

 17 100.00 1.41 tedtalk + tedtalk 0849ThomasDolby.txt

 18 100.00 0.45 leaflet + leaflet Adenocor.txt

Page 28 of 35

 19 99.08 20.12 leaflet + leaflet Zaditen_Elixir.txt

 20 99.04 35.12 leaflet + leaflet Cafergot_Tablets.txt

 21 99.04 15.67 leaflet + leaflet Norprolac.txt

 22 98.97 25.57 leaflet + leaflet Sandocal_1000.txt

 23 98.36 13.49 leaflet + leaflet Neoral_Soft_Gelatin_Caps.txt

 24 98.32 15.20 leaflet + leaflet Sandimmun_Capsules.txt

 25 98.31 7.00 tedtalk + tedtalk 0823NatalieMerchant.txt

 26 98.14 29.83 leaflet + leaflet Trifyba.txt

 27 97.70 19.63 leaflet + leaflet Distaclor_Suspension.txt

 28 97.68 11.19 leaflet + leaflet Tagamet_Effervescent_Tabs.txt

 29 97.61 19.20 leaflet + leaflet Diclomax_SR.txt

 30 97.56 17.22 leaflet + leaflet Cordarone_X_Tablets.txt

 31 96.99 16.26 leaflet + leaflet Sporanox_Capsules.txt

 32 96.85 29.98 leaflet + leaflet Zaditen_Tablets.txt

 33 96.77 15.45 leaflet + leaflet Dobutrex.txt

 34 96.72 20.79 leaflet + leaflet Distaclor_MR.txt

 35 96.70 9.26 leaflet + leaflet Tagamet_Infusion.txt

 36 96.63 16.31 leaflet + leaflet Monomax_SR_40.txt

 37 96.49 16.30 leaflet + leaflet Merbentyl_Syrup.txt

 38 96.07 10.75 leaflet + leaflet Ecostatin_Cream.txt

 39 96.03 25.45 leaflet + leaflet Syntopressin.txt

 40 96.02 18.49 leaflet + leaflet Immukin.txt

[.... many lines omitted]

1177 47.70 7.83 ares + ares A_RES_56_94-en.txt

1178 47.62 0.78 wc - tedtalk 1476BeebanKidron.txt

1179 47.34 11.27 ares + ares A_RES_56_35-en.txt

1180 47.33 19.58 ares + ares A_RES_56_69-en.txt

1181 47.06 12.31 wine + wine paris_street.txt

1182 46.84 11.54 ares + ares A_RES_55_38-en.txt

1183 46.64 11.79 ares + ares A_RES_56_154-en.txt

1184 46.52 15.33 ares + ares A_RES_55_175-en.txt

1185 46.24 1.59 tedtalk + tedtalk 1721LiuBolin.txt

1186 45.72 1.45 tedtalk + tedtalk 0464JoseAntonioAbreu.txt

1187 45.45 11.76 ares + ares A_RES_55_11-en.txt

1188 45.22 1.78 tedtalk + tedtalk 1003StefanWolff.txt

1189 45.06 2.53 sres + sres S_RES_13822001-en.txt

1190 44.62 0.95 tedtalk + tedtalk 1019BartWeetjens.txt

1191 44.37 2.11 tedtalk + tedtalk 1645BoghumaKabisenTitanji.txt

1192 43.51 7.20 ares + ares A_RES_55_235-en.txt

1193 43.36 1.28 tedtalk + tedtalk 1800EleanorLongden.txt

1194 42.72 1.80 tedtalk + tedtalk 1121RogerEbert.txt

1195 40.98 10.07 sres - ares A_RES_55_55-en.txt

1196 40.91 1.91 wine + wine le_provenance_cotes_de_provence.txt

1197 40.30 1.61 tedtalk + tedtalk 0558LizColeman.txt

1198 38.78 1.54 tedtalk + tedtalk 1252NathalieMiebach.txt

1199 38.01 17.57 ares + ares A_RES_57_271-en.txt

1200 34.91 1.50 tedtalk - leaflet Serevent_Diskhaler.txt

1201 0.00 0.00 tedtalk - wine oxford_landing_2011_sauvignon_blanc.txt

1202 0.00 0.00 tedtalk + tedtalk 1740JohnLegend.txt

1203 0.00 0.00 tedtalk + tedtalk 1172OnyxAshanti.txt

1204 0.00 0.00 tedtalk + tedtalk 0639ImogenHeap.txt

1205 0.00 0.00 tedtalk + tedtalk 0115RachelleGarniez.txt

1206 0.00 0.00 tedtalk + tedtalk 0099JillSobule.txt

Confusion matrix :

Truecat = ares beer leaflet sres tedtalk wc wine

Predcat : ares 284 0 0 0 0 0 0

Predcat : beer 0 27 0 0 0 0 1

Predcat : leaflet 0 0 170 0 1 0 0

Predcat : sres 7 0 0 112 0 0 0

Predcat : tedtalk 0 0 1 0 551 0 1

Predcat : wc 0 0 1 0 5 24 0

Predcat : wine 0 1 0 0 0 0 20

Kappa value = 0.9787

Precision (%) by category :

ares 100.0

beer 96.4286

leaflet 99.4152

sres 94.1176

tedtalk 99.6383

wc 80.0

wine 95.2381

Recall (%) by category :

Page 29 of 35

ares 97.5945

beer 96.4286

leaflet 98.8372

sres 100.0

tedtalk 98.9228

wc 100.0

wine 90.9091

cases = 1206

cases with unseen category labels = 0

hits = 1188

percent hits = 98.51

Number of non-null instances = 1200

Correct decisions in such cases = 1183

Percent of such cases correct = 98.58

Below are copied the first and last lines of the classification ranking to illustrate the format.

 1 100.00 20.86 leaflet + leaflet Metrogel.txt

1206 0.00 0.00 tedtalk + tedtalk 0099JillSobule.txt

Here the first item, which can be regarded as the most confident attribution, has a relative
percentage coverage of 100 and an absolute coverage of 20.86 percent. This means that the 3:6-
grams from the category giving the highest coverage score to this file (leaflet) covered 20.86% of the
characters in this text. Furthermore, no other category covered any of this (rather short) text file,
since the relative coverage was 100 percent. The string "leaflet + leaflet" means that the predicted
category (before the plus sign) was bottlab as was the true category (after the plus sign).

The 1206th item concerns a TED talk (number 0099 by Jill Souboule) which wasn't covered by any
3:6-grams from any of the seven text categories. (It is in the teds subdirectory, so you can have a
look to see why). The reason it was given a plus-sign (correct assignment) is because in the event of
zero coverage, the most common class is assigned, which in this example was tedtalk. At ranks 1200
and 1201 are a couple of actual mistakes, which are marked with a minus sign. (Categories unseen in
the training n-grams would receive a question mark.)

Following the main listing is a confusion matrix along with some associated statistics. This shows
quite a good level of classification accuracy, 98.51 percent correct overall, or 98.58 percent
excluding null cases with zero coverage. In other words, these text types are quite distinct from each
other in their usage of repeated token sequences. This success rate is achieved on a genuine holdout
sample. Even the beer and wine labels are relatively well distinguished, as are the General Assembly
and Security Council resolutions. With text types based on content, especially if those text types are
relatively formulaic, this method does well. For investigating authorship, however, and more
generally with text types of similar registers &/or varied content, it is better to use shorter n-grams,
e.g. 1:4-grams, if text classification is your main objective. 1-grams, of course, are those old
standbys, single tokens (usually words).

To Conclude: Corpora and Collocades
Many researchers have wrestled with the problem of improperly fragmented n-grams, or, to put it
another way, the question "how long is a string of pieces?". The method embodied in formulex.py is,
I believe, novel, though it has much in common with the "Serial Cascading Algorithm" described in
O'Donnell (2011) and attributed to Catherine Smith. Another approach is reported by Pezik (2015)
based on subsumption rates and the logarithm of the relative frequencies of the component tokens
in each n-gram. However, the formulex algorithm is simpler and has no fixed upper limit on the
length of the sequences produced. Thus it leads to nontrivially differing results.

As for what have here been termed 'collocades', they are obviously akin to the 'collocational chains'
discussed in Daudaravičius & Marcinkevičienė (2004) and further elaborated by Gries & Mukhurjee

Page 30 of 35

(2010). However, Gries & Mukhurjee use a rather complex statistical criterion, 'lexical gravity' --
related to the idea of 'lexical attraction' introduced by Yuret (1998) -- to define them, and remain
within the context of n-gram lists. It seems to me that the idea of textual 'coverage' is simpler to
compute and, in my view, easier to explain; and again yields somewhat different results. Thus I
believe it is worth having a separate term for such subsequences.

Of course, eventually, it would be highly desirable to find a way of integrating clearly related
elements of the formulexicon such as

"please read this leaflet carefully before taking your tablets"
and

"please read this leaflet carefully before you take your medicine"

into a form that reveals their relatedness (a kind of micro-grammar), but that is a challenge for
another day....

Acknowledgements

Thanks to Lukasz Grabowski for drawing me into the maelstrom that is research into formulaic
language (;-) and for providing the Patient Information Leaflets and informing me where to find the
cord corpus. I am also grateful to Lukasz Grabowski and Phoenix Lam for persuading me that the
output of flicshow should be multi-coloured rather than just dichromatic, which definitely is an
improvement. Thanks also to the Python team for creating and maintaining such a splendid
programming language.

And thank you for reading this far. (:-)

References

Bouayad-Agha, N. 2006. The Patient Information Leaflet (PIL) 2.0 corpus. Available at:
http://mcs.open.ac.uk/nlg/old_projects/pills/corpus/PIL/ (accessed May 2012).

Bouayad-Agha, N. & Kilgarriff, A. 1999. “Duplication in Corpora” In Proceedings of the 2nd CLUK
Colloquium. Colchester, Essex, 11-12 Jan 1999. Available at:
http://www.kilgarriff.co.uk/Publications/1999-BouayadAghaKilg-CLUK.pdf

Chomsky, N. 1972. Language and Mind [enlarged edition]. New York: Harcourt Brace Jovanovich.

Daudaravičius, V. & Marcinkevičienė, R. 2004. Gravity counts for the boundaries of collocations.
International Journal of Corpus Linguistics, 9 (2), 321–348.

Gries, Stefan Th. and Joybrato Mukherjee. 2010. Lexical gravity across varieties of English: An ICE-
based study of n-grams in Asian Englishes. International Journal of Corpus Linguistics 15 (4): 520–
548.

O'Donnell, M.B. 2011. The adjusted frequency list: A method to produce cluster-sensitive frequency
lists. ICAME Journal, 35, 117-134.

Pezik, P. (2015). Using n-gram independence to identify discourse-functional lexical units in spoken
learner corpus data. International Journal of Corpus Linguistics, 1(2), 242-255. doi
10.1075/ijclr.1.2.03pez.

http://mcs.open.ac.uk/nlg/old_projects/pills/corpus/PIL/
http://www.kilgarriff.co.uk/Publications/1999-BouayadAghaKilg-CLUK.pdf

Page 31 of 35

Upton, G. & Cook, I. 2006. Oxford Dictionary of Statistics, second ed. Oxford: Oxford Univ. Press.

Wray, A. 2002. Formulaic language and the lexicon. Cambridge: Cambridge University Press.

Yuret, D. 1998. Discovery of linguistic relations using lexical attraction. Ph.D. dissertation,
Department of Computer Science and Electrical Engineering, MIT.

Page 32 of 35

Appendix 1 : Metafiles

A metafile is a kind of data dictionary. It specifies which text files to work on, and may link associated
data with each file. The main point is that metafiles can be read into a spreadsheet program such as
Excel, modified, then written back out again to guide further processing (without necessarily
rearranging a large collection of documents on disc). Another point to note is that all the software
described herein assumes that the first 2 columns of a metafile are called "prepath" and "filename"
and contain the file path then the file name. Columns within a metafile are delimited by the
horizontal tab character. The programs also need a third column, called "doctype" by default. This
gives each text a category label.

The first line of a metafile is treated as a header, giving column names.

As an example, the flicmeta metafile (formulib\mets\flicmeta.txt) is listed below.

prepath filename doctype

C:\formulib\samples\ares\ A_RES_56_259-en.txt ares

C:\formulib\samples\ares\ A_RES_56_59-en.txt ares

C:\formulib\samples\ares\ A_RES_55_20-en.txt ares

C:\formulib\samples\ares\ A_RES_56_24-en.txt ares

C:\formulib\samples\cord\ cord2402.txt cord

C:\formulib\samples\cord\ cord2140.txt cord

C:\formulib\samples\pils\ Sustanon.txt leaflet

C:\formulib\samples\pils\ Trasidrex.txt leaflet

C:\formulib\samples\sres\ S_RES_14912003-en.txt sres

C:\formulib\samples\sres\ S_RES_14672003-en.txt sres

C:\formulib\samples\teds\ 0918JulianAssange.txt tedtalk

C:\formulib\samples\teds\ 0246TodMachover+DanEllsey.txt tedtalk

C:\formulib\samples\wc\ SpionKop.txt wc

C:\formulib\samples\wc\ wc060731.txt wc

C:\formulib\samples\wc\ wc400820.txt wc

C:\formulib\samples\wc\ wc411226.txt wc

C:\formulib\samples\wc\ wc281024.txt wc

C:\formulib\samples\wc\ wc461118.txt wc

C:\formulib\samples\wc\ MarlPref3308.TXT wc

c:\formulib\samples\teds\ 1548MarkForsyth.txt tedtalk

c:\formulib\samples\ FictZolaE_Germinal_VII2_EN.txt queried

c:\formulib\samples\ MarxMarxK_ComMan_01_EN.txt queried

Of course, the point of metafiles is that they can be edited, so there is no need to stick to this
particular selection.

Page 33 of 35

Appendix 2 : Parameter Files

Parameters used by outgrams.py.

Parameter Default value Function

atomize 1 This can be zero or 1. If it is 1, the input texts are tokenized by the
program's built-in tokenizer. Only set this to zero if your files have
already been tokenized, in which case whitespace will be
considered to delimit tokens.

casefold 1 This can be 0 or 1. Zero means that upper and lower case is left as
found on input; 1 means that input texts will have all letters forced
into lower case. (No effect on character sets without upper/lower
case distinction.)

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

dropsubs 0 This is normally 0, but if it is 1 then during output onto the n-gram
file any n-gram that is a subsequence of one that has already been
written will be skipped. (Rather drastic in its effects.)

gramdata jobname with
"_gram.dat"
appended

File specification of file onto which n-gram data will be written.

gramlist jobname with
"_list.txt"
appended

This specifies the file onto which n-grams ordered by frequency
only (with various sizes intermingled) for each category of text will
be written. Default value is the jobname followed by "_list.txt".

jobname [outgrams] This gives the job a name. Any text string can be the value. It isn't
necessary but it is advisable as the jobname will be used as a prefix
to the program's output files, so it can be seen that they form a
group. If none is given, the program's name will be used as
jobname.

maxiglen 5 This specifies the longest n-gram to be considered. It can't be more
than 9.

maxtops 20 This specifies the number of "stop-words" to be found and used.
The only effect of having more than zero is that any n-gram
consisting only of stop-words will be omitted. (See main text.)

metafile [None] This should be the full path specification of a metafile that indicates
the text files that belong to the input corpus, along with their
category memberships.

miniglen 2 This specifies the shortest n-gram size that will be considered. The
minimum is 1, which wouldn't make sense when looking at
formulaic language, though (if using taverns.py as a classifier) might
make sense in the context of authorship attribution.

outfile outgrams.txt File where logging information will be written. (Really only needed
for debugging.)

outpath subfolder "op"
of parent
directory

You can send the output to a specified directory if you like.

snipsize 115 This gives the size of a text block, in tokens, to be used when
calculating pervasiveness to discover stop-words.

targvar doctype This should be the name of the column in the metafile containing
the category labels.

topgrams 100 This specifies how many of the highest-scoring n-grams (of each

Page 34 of 35

size from maxiglen down to miniglen) will be written to the
gramdata file for each text category.

trainmet [None] This should be the full path specification of a metafile that indicates
the text files that belong to the training corpus, along with their
category memberships. If both metafile & trainmet are specified,
trainmet takes priority.

wordonly 0 This should be integer 0 or 1. If it is 1, the tokenizer will ignore input
tokens unless they begin with an alphanumeric character. If it is
zero, all tokens will be considered, even sequences of punctuation
symbols and so on. Unless you're sure the punctuation is original, it
is advisable to set this parameter to 1.

Parameters specific to formulex.py

Parameter Default value Function

gramdata jobname with
"_gram.dat"
appended

Full filepath name where n-grams have been written by
outgrams.py.

outforms 100 Number of collocades to be written on the "_flab.txt" file.

testmeta [None] This should be the full path specification of a metafile that indicates
the text files that of a test or holdout corpus, along with their
category memberships. (Optional.)

Parameters specific to flicshow.py

Parameter Default value Function

gramdata jobname with
"_gram.dat"
appended

Full filepath name where n-grams have been written by
outgrams.py.

huemode 0 Colour-coding option: 0 indicating scoring by longest covering n-
gram, 1 indicating covering by number of n-grams covering each
token.

metaflic [None] This should be the full path specification of a metafile that indicates
the files to be processed and written as html flic files (Formulaic
Language In Context) onto a subfolder called html of the outpath
folder.

Parameters specific to taverns.py

Parameter Default value Function

contrast 0 Set this to 1 to make the program create an aggregate table of n-
grams from other categories in contrast to each category's
common n-gram list and use coverage by items from this anti-list to
cancel coverage by that category's own n-grams. (Doesn't seem to
have a worthwhile effect in practice.)

Page 35 of 35

Appendix 3 : Sample Corpora

ARES.
These 700 documents are resolutions of the United Nations General Assembly sessions 54 to 57,
four dated 1999 and the rest from the years 2000-2003. They were extracted from the publications
of the United Nations, collated by DFKI GmbH (Deutsches Forschungszentrum für Künstliche
Intelligenz), available from www.euromatrixplus.eu/multi-UN/. A total of 720 documents were
extracted but the 20 shortest were excluded.

BOTTLABS.
This metafile describes a small corpus of "back label" texts from beverage bottles (mostly wine or
beer). It is being collected by the author and will be updated periodically with each release of
formulib.

CORD.
5,768 documents from the EU Commission Community Research & Development Information
Service (CORDIS). Obtained from
http://psi.amu.edu.pl/en/index.php?title=Parallel_Corpora
by selecting all texts of 196 words or more from the English collection.

PILS.
The patient information leaflets (PILs) were extracted from the Patient Information Leaflet Corpus
2.0, originally compiled at the Natural Language Technology Group at the University of Brighton and
discussed in greater detail by Buoayad-Agha and Kilgarriff (1999) and Buoayad-Agha (2006). This
corpus is available at http://www.mcs.open.ac.uk/nlg/old_projects/pills/corpus . It contains 465
texts but four were excluded from this selection as near-duplicates.

SRES.
This corpus contains 275 resolutions passed by the United Nations Security Council in the period
2000-2004. The texts were extracted from the publications of the United Nations, collated by DFKI
GmbH (Deutsches Forschungszentrum für Künstliche Intelligenz) www.dfki.de , available from
www.euromatrixplus.eu/multi-UN/. The SRES texts cover a slightly longer period than that of ARES
since fewer Security Council resolutions are issued each year.

TEDS.
1555 transcripts in English of talks given as part of the TED initiative (www.ted.com). Obtained from
collection held at WIT3 website https://wit3.fbk.eu .

WC.
The 55 texts by Winston Churchill (WC) cover a period of over 60 years and thus deal with a wide
range of topics. Most have a political or historical focus, but as Churchill was a Nobel laureate in
literature we assume his command of English was more creative than average. The texts comprise
45 speeches sourced from http://www.winstonchurchill.org/learn/speeches/speeches-of-winston-
churchill as well as his Nobel prize acceptance speech, 2 individual chapters and 2 prefaces from his
four-volume biography of Marlborough, a chapter from his 1897 novel Savrola and some occasional
pieces of journalism found through Project Gutenberg.
https://www.gutenberg.org/browse/authors/c

http://www.euromatrixplus.eu/multi-UN/
http://psi.amu.edu.pl/en/index.php?title=Parallel_Corpora
http://www.mcs.open.ac.uk/nlg/old_projects/pills/corpus
http://www.dfki.de/
http://www.euromatrixplus.eu/multi-UN/
http://www.ted.com/
https://wit3.fbk.eu/
http://www.winstonchurchill.org/learn/speeches/speeches-of-winston-churchill
http://www.winstonchurchill.org/learn/speeches/speeches-of-winston-churchill
https://www.gutenberg.org/browse/authors/c

