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"Every man's language has, first, its individualities; secondly, the common properties of the class to which he
belongs; and thirdly, words and phrases of universal use." -- Samuel Taylor Coleridge (1906 [1817]).

Abstract

Stylometrists have proposed and used a wide variety of textual features or markers, but
until recently very little attention has been focused on the question: where do
textual features come from? In many text-categorization tasks the choice of textual
features is a crucial determinant of success, yet is typically left to the intuition of
the analyst. We argue that it would be desirable, at least in some cases, if this part
of the process were less dependent on subjective judgement. Accordingly, this
paper compares five different methods of textual feature finding that do not need
background knowledge external to the texts being analyzed (three proposed by
previous stylometers, two devised for this study). As these methods do not rely on
parsing or semantic analysis, they are not tied to the English language only.
Results of a benchmark test on 10 representative text-classification problems
suggest that the technique here designated Monte-Carlo Feature-Finding has
certain advantages that deserve consideration by future workers in this area.

Keywords: Linguistic Variables, Minimum-Deviance Classification, Monte-Carlo
Methods, Pattern Recognition, Stylometry, Text Categorization.
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1. Introduction

In their attempts to capture consistent and distinctive features of linguistic style, stylometrists have
used a bewildering variety of textual indicators (see: Holmes, 1994). In the majority of stylometric
studies, however, the choice of which indicators (or `markers') to use in a given problem is left to
the discretion of the investigator (e.g. Dixon & Mannion, 1993; Matthews & Merriam, 1993;
Merriam & Matthews, 1994; Holmes & Forsyth, 1995). An advantage of this practice is that it
allows the exercise of human judgement, and thus can sometimes save a time-consuming search
for suitable descriptors. On the other hand, it also inevitably involves subjectivity. Very often the
choice of suitable linguistic markers is crucial to the development of an effective discriminant
rule; but, being subjective, it may not be replicable on another problem. A further disadvantage is
that each stylometrist typically has a `tool-kit' of favourite marker types which encompasses only a
small fraction of those that might be used.

The situation is similar in the related fields of multivariate pattern recognition and machine
learning (Everitt & Dunn, 1991; Quinlan, 1993): most studies begin by presuming that a suitable
set of attributes or features has already been found. In text analysis this presumption is more than
usually questionable. It is arguable, for instance, that Mosteller and Wallace (1984 [1964]), in
their classic study of The Federalist Papers, brought a good deal of background knowledge to the
task of finding features that would distinguish Hamilton's from Madison's writings, and that once
they had discovered reliable verbal markers such as `upon' and `while' the game was almost over.
As part of an automated inductive system, it would clearly be desirable for this part of the process
to be less dependent on human expertise.

For these and other reasons, a number of studies have appeared recently (e.g. Burrows, 1992;
Binongo, 1994; Burrows & Craig, 1994; Kjell, 1994; Ledger & Merriam, 1994) in which the
features used as indicators are not imposed by the prior judgement of the analyst but are -- at least
to a large extent -- dictated by the texts being analyzed. The main aim of the present paper is to
advance this trend, by conducting a test of five different methods of textual feature-finding (three
proposed by previous researchers and two newly devised) on a mixed set of text-classification
problems. Although no set of textual markers can be entirely free of preconceptions, the five
methods of feature-finding tested here depend only minimally on human judgement. In addition,
none of them presupposes that the text being analyzed is in English.

A secondary aim is to show that categorization of quite short segments of text (shorter than most
previous stylometrists have tried to classify) is feasible using a relatively simple algorithm --
provided that suitable features have been found.

Thus this paper describes an experiment with a straightforward plan: a single classification
technique is applied to 10 test problems using five different types of textual marker. The main
response variable is the proportion of correct classifications achieved on unseen test samples (each
relatively short); the main factor of interest is the source of markers (with five levels).

Before describing these different marker sources, however, it is necessary to give a brief outline of
(1) the benchmark problems, and (2) the classification algorithm used -- as both of these have
novel aspects that will be unfamiliar to many readers.
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2. The Bristol Benchmark Suite

In many areas of computing, benchmarking is a routine practice. For instance, when compilers are
tested for compliance to a programming-language specification, it is normal to apply them to a
suite of benchmark cases and record any divergence from expected behaviour.

There is not room here to go into the pros and cons of benchmarking in any depth, except to
acknowledge that sets of benchmarks do have drawbacks as well as advantages -- one
disadvantage being that once a a benchmark suite is widely accepted as standard, an incentive
exists to optimize performance on that suite, possibly at the expense of other problem types.
Nevertheless benchmarking does have a role to play in setting agreed and objective standards. For
example, it is arguable that in the field of forecasting, the work of Makridakis and colleagues (e.g.
Makridakis & Wheelwright, 1989), who tested a number of forecasting methods on a wide range
of (mostly economic) time series, transformed the field -- leading to both methodological and
practical advances.

Likewise, in machine learning, the general acceptance of the Machine-Learning Database
Repository (Murphy & Aha, 1991) as a de facto standard, and its employment as the basis for
extensive comparative tests (e.g. Michie et al., 1994) has thrown new light on the merits and
demerits of various competing algorithms.

Although billion-byte public-domain archives of text exist, e.g. Project Gutenberg and the Oxford
Text Archive, stylometry currently lacks an equivalent set of accepted test problems. Thus we
have been forced to compile our own. For any deficiences in it, we apologize; but it is hoped that
the test problems described below will evolve in due course into something of value to the field as
a whole. (It is fair to state that even in its present admittedly underdeveloped form the suite of
problems described below already provides a more varied and exhaustive range of tests than any
previously reported in the stylometric literature.)

The text-categorization problems in this suite were selected to fulfil a number of requirements.

1.Provenance: the true category of each text should be well attested.
2.Variety: problems other than authorship should be included.
3.Language: not all the texts should be in English.
4.Difficulty: both hard and easy problems should be included.
5.Size: the training texts should be of `modest' size, such as might be expected in practical

applications.

The last point may need amplification. Although some huge text samples are available, most text-
classification tasks in real life require decisions to be made on the basis of samples in the order of
thousands or tens of thousands, rather than hundreds of thousands or millions, of words. An
enormous training sample of undisputed text is, therefore, something of a luxury. It was felt
important that the method used here should be able to perform reasonably well without reliance
on this luxury.
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Subject to these constraints, ten test problems were chosen. This suite (called here Tbench95)
contains three authorship problems, three chronology problems, two content-based problems, and
two synthetic quasi-random problems. Fuller information is given in Appendix A.

3. Pre-Processing & Other Preliminaries

In order to impose uniformity of layout and thus reduce the effect of factors such as line-length
(usually not an authorial decision and in any case very easy to mimic) all text samples were passed
through a program called PRETEXT before being analyzed. This program makes some minor
formatting changes: tabs and other white-space characters are converted into blanks; runs of
multiple blanks are converted into single blanks; and upper-case letters are converted into lower
case. By far the most important change made by PRETEXT, however, is to break running text
into segments that are then treated as units or cases to be classified.

Just what consititutes a natural unit of text is by no means obvious. Different researchers have
made different decisions about the best way of segmenting long texts and thus turning a single
sequence of characters into a number of cases or observations. Some have used fixed-length
blocks (e.g. Elliott & Valenza, 1991); others have respected natural subdivisions in the text (e.g.
Ule, 1982). Both approaches have merits and drawbacks.

Because linguistic materials have a hierarchical structure there is no universally correct
segmentation scheme. Textual units could range from single lines or sentences at one end of the
scale to chapters or even whole books at the other. Generally speaking, smaller text units are too
short to provide opportunities for stylistic habits to operate on the arrangement of internal
constituents, while larger units are insufficiently frequent to provide enough examples for reliable
statistical inference.

The compromise adopted for the present study was to break all texts into blocks of roughly the
same length. In fact, each block boundary was taken as the first new-line in the original text on or
after the 999th byte in the block being formed. As a result, mean block size is always between
1010 and 1030 characters. Such units will be referred to as kilobyte lines.

The number of words per kilobyte line varies according to the type of writing. A representative
figure for Tbench95 as a whole is 187 words per line. This is, in fact, the median word length per
line of the five files nearest to the median overall line length (of 1018 bytes). The exact figure is
unimportant, though it should be noted that each kilobyte line (almost invariably less than 200
words) is very short in comparison with the size of text units that previous stylometrists have felt
worth analyzing. In other words, this is an attempt to work with text units near the lower limit of
what has thus far been considered feasible. Evidence of this is provided by the two quotations
below, made 20 years apart.

"It is clear in the present study that there is considerable loss in discriminatory power
when samples fall below 500 words". (Baillie, 1974)
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"We do not think it likely that authorship characteristics would be strongly apparent at
levels below say 500 words, or approximately 2500 letters. Even using 500 word
samples we should anticipate a great deal of unevenness, and that expectation is
confirmed by these results." (Ledger & Merriam, 1994)

Further confirmation is provided in Table 1, which collates information from a selection of
stylometric studies, showing the length, in words, of text blocks that various researchers have tried
to categorize. The numbers in the column labelled Norm give the typical or recommended text
size for the researcher(s) concerned, i.e. the size for which they have confidence in their methods.
Rows have been arranged in descending order of this norm. The Range column gives the sizes,
again in words, of the smallest and largest text block analyzed by the worker(s) concerned. It will
be seen that there is wide variation. None the less, the size of text block that previous researchers
have felt able to categorize is typically quite large, the median in the Norm column being 3500
words. The smallest text segment ever given an attribution (so far as we know) is a 175-word
poem analyzed by Louis Ule (1982), who also analyzed the next-smallest, of 192 words, as well
as some of the biggest.

Table 1 -- Size of Text Blocks Analyzed by Various Stylometrists.

Researchers Subject Norm Range

Smith (1985) Elizabethan Drama 20595 17965-24925

Ule (1982) Marlowe's writings 13000 175-21106

Holmes (1992) Mormon scriptures 10000 5715-12776

Butler (1979) Sylvia Plath's poems 8000 6100-9340

Merriam (1989) Federalist papers 6000 [unknown]

Burrows (1992) Bronte sisters 4000 500-8000

Milic (1967) Jonathan Swift 3500 3324-3777

Mosteller & Wallace
(1984)

Federalist papers 2100 906-3506

Ledger (1989) Platonic dialogues 1000 1000-1000

Matthews & Merriam
(1993)

Elizabethan drama 1000 [unknown]

Binongo (1994) Nick Joaquim's short
stories

1000 [unknown]

Elliott & Valenza
(1991)

Elizabethan poetry 500 425-500

Thisted & Efron
(1987)

Shakespeare &
contemporaries

400 234-495

It is very rare for anyone to attempt to classify a text segment of less than 250 words; so the
problem of classifying kilobyte-sized chunks, averaging around 187 words and almost always less
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than 200 words, must be regarded as a relatively stringent stylometric test. A method that is
successful under these conditions thus deserves serious consideration.

4. Classification by Minimum Deviance

The particular classification algorithm used is not the prime concern of this paper. For that reason
it was decided to employ a relatively simple method for the trials reported here. We term this the
`method of minimum deviance'. It is a variant of the nearest-centroid classifier, which is, in turn,
related to the well-known and popular nearest-neighbour classifier (1-NNC): see, for example,
Dasarathy (1991). Similarity-based methods of this general type have been shown in several
empirical trials to be surprisingly robust (Forsyth, 1990; Aha et al., 1991; Michie et al., 1994;
McKenzie & Forsyth, 1995). Moreover, such methods are easy to understand and to implement.

Basically, the minimum-deviance classifier, as implemented here, uses a training set of examples
with known class membership to compute a centroid (multi-dimensional average) for each
category. Then on a fresh or unseen case a measure of distance from (or equivalently, proximity
to) each class centroid is computed and the current case is assigned to the category of the centroid
which it most resembles. Most such algorithms use a Euclidean or City-block distance metric, but
in the present case the `distance' measure used is termed deviance. It is computed as follows

where i is the current case, j is a feature index, c is a class code, and mcj is the mean value of class
c on feature j in the training set. If the features are, for example, word frequencies then xij is
simply the number of times that word j occurs in line i. (This relies on using lines, or blocks, of
approximately equal length, as is done here.)

This measure is asymptotically related to the Chi-squared statistic

with mcj being the expected value under the hypothesis that the instance belongs to category c. The
+1.0 in the denominator can be seen as a slight bias, downgrading the effect of infrequently
occurring features, as well as avoiding division by zero.

Overall, minimum-deviance classification is a simple, fast and intuitively appealing technique
which appears to give good results.

5. Data-Driven Feature-Finding

In this section we return to the main focus of the investigation by outlining three of the methods of
data-driven feature-finding tested on the benchmark suite, namely those proposed by previous
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researchers. (The two novel methods need somewhat fuller discussion, and are covered in the next
three sections.)

1.Letters (Ledger & Merriam, 1994);
2.Most Common Words (Burrows, 1992);
3.Digrams (Kjell, 1994).

The first and simplest method is simply to treat each letter of the alphabet as a feature, i.e. to count
the frequency of each of the 26 letters in each kilobyte line. At first glance this would seem not
just simple, but simplistic. However, several previous studies -- most notably Ledger & Merriam
(1994), but also Ule (1982) and Ledger (1989) -- have reported surprisingly good results when
using letter-counts as stylistic indicators. At the very least, it allows us to establish a baseline level
of performance: more sophisticated features sets need to outperform letter counting to justify their
added complexity.

The second type of textual feature has been used by Burrows (1992) as well as Binongo (1994),
among others, not only in authorship attribution but also to distinguish among genres. Essentially
it involves finding the most frequently used words and treating the rate of usage of each such
word in a given text as a feature. The exact number of common words used varies by author and
application. Burrows and colleagues (Burrows, 1992; Burrows & Craig, 1994) discuss examples
using anywhere from the 50 most common to the 100 most common words. Binongo (1994) uses
the commonest 36 words (after excluding pronouns). Greenwood (1995) uses the commonest 32
(in New Testament Greek). In the present study, the most frequent 96 words in the combined
training samples were used -- without exclusions. Most such words are function words, and thus
this approach can be said to continue the tradition, pioneered by Mosteller & Wallace (1984
[1964]), of using frequent function words as markers.

The third method tested here uses digram counts as features. Kjell (1994) reported good results in
assigning Federalist essays written either by Hamilton or Madison to the correct authors using a
neural-network classifier to which letter-pair frequencies were given as input features. The present
method is a slight generalization of Kjell's in that it uses character pairs rather than just letter
pairs; so, for instance, digrams involving blanks or other punctuation marks may be used. Another
difference from Kjell's work is that, instead of selecting letter pairs for their discriminatory ability,
the 96 commonest digrams in the combined training sets of the problem concerned were used,
thus rendering this approach more directly comparable with that of Burrows.

Note that all three methods of feature-finding outlined above share four desirable properties: (1)
they are easy to compute; (2) they are easy to explain; (3) they are interlingual, i.e. they are not
limited to English; (4) they require no exercise of skill by a user but can be found quite
automatically. These four properties also apply to the next two methods.

6. Progressive Pairwise Chunking

To broaden the scope of this comparison somewhat, two novel feature-finding techniques were
also tested.
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The first of these is here called progressive pairwise chunking. It attempts to avoid the artificiality
of always using fixed-length markers (such as digrams or trigrams) while also allowing marker
substrings that are shorter than words (e.g. an affix such as `ed ') or which cross word boundaries
(e.g. a collocation such as `in the'). This is done by adapting a method first described (in different
contexts) by Wolff (1975) and Dawkins (1976).

Essentially the algorithm scans a byte-encoded text sequence, looking for the most common pair
of symbols. At the end of each scan it replaces all occurrences of that pair by a newly allocated
digram code. This process is repeated for the next most common pair and so on, till the requested
number of pairings have been made. The program used here assumes that character codes from
ASCII 128 upwards are free for reassignment (as is the case with Tbench95), so byte codes from
128 onwards are allocated sequentially. Its output is a list of doublets. These are not always
digrams, since previously concatenated doublets can be linked in later passes. Thus the program
can build up quite long chains, if they occur in the data -- identifying sequential dependencies of
quite a high order (in a Markovian sense) without demanding excessive computational resources.
In particular, it does not need the huge but sparsely filled multi-dimensional matrices that would
be required by a simple-minded approach to analyzing transition probabilities spanning more than
a few items.

An extract from this program's output when applied to the NAMESAKE training data (containing
poems by Bob Dylan and Dylan Thomas) is shown as Table 2. For the sake of brevity, only the
most common 16 substrings are shown, plus a selection of less common strings that illustrate the
potential of this method.

Table 2 -- Example of Substrings Formed by Progressive Pairwise Chunking.

FREQLIST output; date: 01/04/96 12:52:30
1 C:\BM95\BD.TRN
68016 bytes.
2 C:\BM95\DT.TRN
45952 bytes.
113968 bytes.
2 input files read.

Most frequent markers :
1 `e ` 4030
2 ` t` 3501
3 `th` 2994
4 ` th` 2482
5 `s ` 2122
6 ` a` 2075
7 ` the` 2042
8 `d ` 1963
9 `in` 1814
10 ` s` 1772
11 `t ` 1767
12 ` the ` 1668
13 `, ` 1637
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14 ` i` 1500
15 ` w` 1486
16 `an` 1412

29 `and ` 742

32 ` and ` 700

41 `ing` 637
42 `you` 623
43 ` you` 618

46 `ed ` 590

60 ` to ` 417

62 `wh` 389

76 `'s ` 293
77 `e, ` 293

80 `s, ` 273
81 ` the s` 269

90 `in the ` 210

96 `ver` 159

It will be seen that, as well as pure digrams, this method tends to find common trigrams (e.g.
`ver'), words (e.g. ` the '), morphemes (e.g. `ing', `'s ') and collocations (e.g. `in the'). Some of the
other substrings, such as `the s', do not fall naturally into any pre-existing linguistic grouping. As
it turns out, Dylan Thomas is rather fond of following the definite article with the letter `s' -- a fact
that more conventional methods of feature finding would not be able to exploit.

7. Monte-Carlo Feature-Finding

The fifth and last method of feature-finding tested in this study takes the idea implicit in the
progressive chunking method (that it is desirable to employ a variety of marker substrings, both
longer and shorter than words) to what may be thought its logical conclusion. Monte-Carlo
Feature-Finding is simply a random search for substrings that exist in the training data. Here this
process is implemented by a program called CHISUBS. This finds textual markers (short
substrings) without any guidance from the user, merely by searching through a given set of
training texts.

The operation of CHISUBS may be described very simply. Firstly the program repeatedly extracts
substrings of length S (where S is a random number between 1 and L) from randomly chosen
locations in the training text until N distinct strings have been found. Next the best C of these
substrings are retained and printed, where `best' means having the highest Chi-squared score. Chi-
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squared is used as an index of distinctiveness here because McMahon et al. (1978) used it
succesfully for a similar purpose -- expected values being calculated on the basis of equal rates of
usage.

In the experiments reported here, the values for the parameters mentioned above were as follows:
L=7, N=3600, C=96. Thus the program sought 3600 different substrings, of from 1 to 7 characters
long, and then retained only the most discriminating 96 of them1.

Table 3 shows the result of running CHISUBS on training data from the Federalist Papers (see
Appendix A for details). It illustrates the sort of markers found by this process. Only the best 26
markers have been listed, to save space.

Table 3 -- Marker Substrings Derived from FEDS Data.

CHISUBS output; date: 01/04/96 13:35:23
gramsize = 7
1 C:\BM95\HAMILTON.TRN
224555 bytes.
2 C:\BM95\MADISON.TRN
232931 bytes.
proportion in class 1 = 0.490845085
proportion in class 2 = 0.509153822
Grams kept = 96

Rank Substring Chi-score Frequencies
1 `pon` 90.7905528 141. 22.
2 ` would` 69.4649456 334. 158.
3 `there ` 68.7778962 137. 32.
4 ` wou` 67.7237888 334. 160.
5 ` on ` 67.0970655 119. 293.
6 ` would ` 64.6422832 322. 155.
7 `up` 61.7127024 292. 137.
8 `na` 58.418292 693. 455.
9 `owers` 56.8864289 30. 128.
10 `partmen` 56.2652439 12. 90.
11 `wers` 51.6241599 34. 129.
12 `epa` 51.3068526 31. 123.
13 `ould` 49.8865689 461. 282.
14 `oul` 49.3130926 461. 283.
15 ` on the` 47.318841 52. 155.
16 `ould ` 46.4552952 446. 276.
17 ` on` 44.845061 288. 489.
18 ` form` 44.3970607 45. 139.

1 Strictly speaking the program only dumps up to C substrings, since those with a Chi-squared
score less than K, the number of categories, are not kept; furthermore, substrings occurring less
than 10 times in the combined training text are also dropped. However, none of the 10 benchmark
sets used here actually gave rise to fewer than 96 markers.
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19 `court` 42.6803592 72. 13.
20 `wo` 42.6386397 399. 245.
21 `powers ` 40.9096955 22. 93.
22 `governm` 40.6851794 149. 291.
23 `ou` 37.9349158 1285. 1031.
24 `ernment` 37.2283842 154. 291.
25 ` there` 36.5487883 160. 72.
26 `presi` 36.2364995 67. 14.

[The grave accent (`) is used here as a string delimiter, since single
and double quotation marks may occur in these text markers.]

To interpret this listing, it should be noted that, in the last two columns, the frequency of usage in
Hamilton's training sample comes before the frequency in Madison's. As both authors are
represented by almost the same amount of text, this can be read as saying that, for example, `
would' is a Hamilton marker (334 : 158) while ` on the ' is a Madison marker (52 : 155). Thus
even this simple printout provides some interesting information -- although many of these items
appear to be what Mosteller & Wallace (1984) would call "dangerously contextual".

Whether such reliance on contextual or content-bearing linguistic items is a weakness can be
answered by empirical testing; but CHISUBS also suffers from two structural faults which, unless
corrected, would detract from its appeal even if such markers prove effective in practice. Firstly,
as can easily be seen above, there is plenty of redundancy (e.g. ` would' as well as ` would ').
Secondly, these text fragments are often segmented at what seem to be inappropriate boundary
points (e.g. `governm', which surely ought to be ` government'). The most notable example of
improper fragmentation in Table 3 is `pon', which anyone who has studied the Federalist problem
will immediately realize is an imperfect surrogate for ` upon'.

8. How Long is a Piece of Substring?

CHISUBS has no background knowledge: it knows nothing about words, morphemes,
punctuation, parts of speech or anything specific to English or other languages. It treats text
simply as a sequence of bytes. This lack of preconceptions is an advantage in that it could deal
with other natural languages such as Latin, artificial languages such as C++, or indeed non-
linguistic material such as coded protein sequences, without amendment. But it has the
disadvantage that it often produces substring markers which, to a user, appear to be truncated at
inappropriate places. Examples of this problem are `rpus' instead of `corpus' (from the MAGS
data) and, most irritatingly, `pon' instead of ` upon' from the Federalist samples.

So the program described here was modified to alleviate this problem -- without the need to
introduce any background knowledge such as a lexicon or morphological rules (specific to
English) that would reduce the generality of the method. The revised program, TEFF (Text-
Extending Feature-Finder), picks short substrings at random by the same method as described, but
each substring is `stretched' as much as compatible with the data as soon as it is generated and
before being saved for evaluation.
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The idea is that if a substring is embedded in a longer string that has exactly the same occurrence
profile then retaining the shorter substring is an inadvertent and probably unwarranted
generalization. For example, if `adver' happens always to be part of `advertise' or `advertising' or
`advertisement' in every occurrence in a particular sample of text it seems a safer assumption that
`advertis' characterizes that text than `adver', which could also appear in `adverbial' or `adverse' or
`animadversion' or `inadvertent' -- which, with our knowledge of English, we suspect to
characterize rather different kinds of writing.

So TEFF employs a procedure that takes each proposed marker string and tacks onto it character
sequences that always precede and/or follow it in the training text. The heart of this process is a
routine called Textend(S) that takes a proposed substring S and extends it a both ends if possible.
An outline of its operation is given as pseudocode below.

REPEAT

IF S is invariably2 preceded by the same character C
THEN S = concatenate(C,S)

IF S is invariably followed by the same character C
THEN S = concatenate(S,C)

UNTIL S reaches maximum size or S is unchanged during loop

In TEFF, this procedure is only used within the same category of text that the substring is found
in. For example, with the Federalist data, if `upo' were found in the Hamilton sample, as it most
probably would be, then a common predecessor/successor would only be sought within that
sample.

This is a simple but effective procedure which does seem to eliminate the most glaring examples
of improper text fragmentation.

As this is a rather subjective judgement, a specimen of the results of applying this procedure to a
list of substrings produced by CHISUBS from the Federalist data is given below as Table 4. This
shows each input substring, then a colon, then the resultant extended version of that substring --
both bounded by grave accents to show whether blanks are present before or after. Thus,

27 `deraci` : ` confederacies`

2 Originally `invariably preceded' (or followed) meant exactly that, but the process was rather
slow, so current versions of this procedure actually stop looking after 39 consecutive occurrences
of the same predecessor or successor. This does not affect substrings that occur less than 39 times,
of course; and appears to make little difference to the rest.
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means that the 27th item was derived from the substring `deraci' which turned out always to be
embedded within the longer string ` confederacies'. From this listing it hoped that readers will be
able to appreciate how the program works and judge its effectiveness.

Table 4 -- Examples of `Stretched' Substrings from Federalist Text.

1 `upo` : ` upon `
2 `pon` : `pon`
3 ` would` : ` would `
4 `there ` : ` there `
5 ` on ` : ` on `
6 `up` : `up`
7 `na` : `na`
8 `owers` : `powers`
9 `partmen` : ` department`
10 `wers` : `wers`
11 `epa` : `epa`
12 `ould` : `ould `
13 ` on the` : ` on the`
14 ` on` : ` on`
15 ` form` : ` form`
16 `court` : ` court`
17 `wo` : `wo`
18 `powers ` : `powers `
19 `overnme` : ` government`
20 `ou` : `ou`
21 `ernment` : `ernment`
22 ` there` : ` there`
23 `presi` : `preside`
24 ` cour` : ` cour`
25 `nat` : `nat`
26 `nmen` : `nment`
27 `deraci` : ` confederacies`
28 `dicia` : ` judicia`
29 `he stat` : ` the stat`
30 `heir` : ` their `
31 `ed` : `ed`
32 `cour` : `cour`
33 `feder` : `federa`
34 `nst` : `nst`
35 `onsti` : ` constitu`
36 `ve` : `ve`
37 `e t` : `e t`
38 `, would` : `, would `
39 `pa` : `pa`
40 `ep` : `ep`
41 `dep` : `dep`
42 `d by` : `d by `
43 `ongres` : ` congress`
44 `e` : `e`
45 `the na` : ` the nat`
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46 `stituti` : `stitution`
47 `xecutiv` : ` executive`
48 ` by ` : ` by `
49 ` govern` : ` govern`
50 `execu` : ` execut`

It is hoped that readers will agree that expansions such as `partmen' to ` department', `dicia' to `
judicia', `he stat' to ` the stat', `ongres' to ` congress' and `heir' to ` their ' represent gains in clarity.

TEFF, however, cannot eliminate short and apparently unsuitable substrings altogether. A case in
point is the retention of `earn' among the MAGS markers as well as ` learn'. This brought to light
an uncorrected scanner error (`iearner' in place of `learner') in the text from the journal Machine
Learning, but even when this was corrected `earn' was retained as the training text also contained
the proper name `Kearns', which ensured that the substring `earn' was not in fact always preceded
by the letter `l' in this file.

Clearly this shows that the method is somewhat sensitive to misspellings, typographical errors and
the presence of rare words or proper names. As it is desirable that a text classifier should be able
to cope with at least some moderate level of spelling &/or typing mistakes, some consideration
was given to the idea of modifying the system so that strings were extended if a high enough
proportion (85% or 90%, say) of their preceding or succeeding characters were identical. Such a
program, however, would inevitably be more complex and slower than TEFF and would require a
good deal of fine tuning, so it has been left as a future development. Meanwhile, the results
quoted in the following section were obtained with TEFF, which does, despite its simplicity, offer
an improvement in intelligibility over the basic Monte-Carlo feature-finder (CHISUBS).

9. Results

To recapitulate, textual features found by five different methods were tested on a range of text-
categorization problems. These five methods will be referred to as shown in Table 5.

Note that only the last type of marker is selected according to distinctiveness: the rest are chosen
solely by frequency.

Table 5 -- Types of Textual marker Tested.

Code Number Name Brief Description

0. LETTERS 26 letters of the Roman alpahbet

1. WORDS Most frequent 96 words

2. DIGRAMS Most frequent 96 digrams

3. DOUBLETS Most frequent 96 substrings found
by progressive pairwise chunking

4. STRINGS Most distinctive 96 substrings
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found by TEFF program

Thus this experiment has a simple 2-factorial design, with five levels on the first factor (source of
text markers) and 10 levels on the second (problem number). The latter is essentially a nuisance
factor: the problems do differ significantly in difficulty, but this is of no great interest. The main
response variable measured is the percentage of correct classifications made on unseen test data.
Mean values are shown in Table 6.

Table 6 -- Mean Success Rates on Test Data.

Source of Textual Marker Mean Percentage Success Rate

LETTERS 69.03

WORDS 72.96

DIGRAMS 74.18

DOUBLETS 74.87

STRINGS 79.39

These results appear in increasing order of accuracy, averaged over the 10 test problems. It would
seem that LETTERS are less effective than the middle group of WORDS, DIGRAMS and
DOUBLETS, while STRINGS are more effective. To test this interpretation, a 2-way Analysis of
Variance on these percentage scores was performed.

As expected, there was a very highly significant main effect of problem (F9,36 = 42.13, p < 0.0005).
Clearly some problems are harder than others. (In fact, NAMESAKE proved the easiest, with a
mean success rate overall of 93.77%; while AUGUSTAN was the most difficult, with a mean
success rate of 48.58%.) More interestingly, there was also a highly significant main effect of
marker type (F4,36 = 5.40, p = 0.002). In other words, even after allowing for differences between
problems, the Null Hypothesis that all five marker types give equal success rates must be rejected.
(This design doe not permit testing for an interaction effect.)

To investigate the factor of marker type further, the effect of differential problem difficulty was
removed by performing a 1-way Analysis of Variance not on the raw percentage success rates but
on the deviations of each score from the mean for that problem, i.e. on the residuals. Once again
this revealed a highly significant effect of marker type (F4,45 = 6.75, p < 0.0005). In addition,
Dunnett's method of multiple comparisons with a standard was performed (Minitab, 1991). For
this purpose, the success rate of DIGRAMS (the marker type giving the median mean score) was
taken as a norm. Using a `family error-rate' of 0.05 (i.e. with a 5% significance level overall) gave
an adjusted error rate of 0.0149. At this level, scores obtained by LETTERS were significantly
different from those obtained by DIGRAMS (lower), as were scores obtained using STRINGS
(higher). The other two marker types (WORDS and DOUBLETS) did not differ significantly from
DIGRAMS in effectiveness.



«Feature-Finding for Text Classification»

16

Thus the appearance of a middle group consisting of WORDS, DIGRAMS and DOUBLETS than
which LETTERS give significantly worse results and STRINGS significantly better was
confirmed. This is perhaps unsurprising -- at least with benefit of hindsight -- given the fact that
LETTERS implies using fewer attributes than the rest (26 versus 96) and that STRINGS are
preselected for distinctiveness whereas the other types of marker are selected only according to
frequency. None the less, the fact that this preselection did not seem to give rise to overfitting was
by no means a foregone conclusion.

In a further attempt to shed light on the effect of marker type as well problem type, indicator
variables (with values 0 or 1) were created and used in a regression analysis, with percentage
success rate again used as the dependent variable. Five of these binary variables indicated the
presence or absence of a particular type of marker (as above); four of them indicated the type of
problem (namely, Authorship, Chronology, Subject-Matter or Random Data). In addition, as the
number of categories is clearly a determinant of how difficult any classification task is, the
reciprocal of the number categories was also computed (1/k) and used as a predictor variable. This
variable gives the proportion of correct classifications expected by chance, assuming equal prior
probabilities.

These ten variables (expected chance success-rate, five indicators of marker type and four
indicators of problem type) were then supplied to MINITAB's Stepwise Regression procedure as
explanatory variables for predicting success rate. The procedure halted after inclusion of three
variables, giving the regression equation below, with an overall R-squared of 0.7107.

Percent = 40.21 - 31.3*Rand + 83*Invcats + 6.6*Strings

This need not be taken too seriously as a predictive formula. What it does reveal, however, is that
only three of these variables were worth using (between them accounting for 71.07% of the
variance in classification success rate). These were, in order of inclusion:
Rand : whether the problem used random data or not;
Invcats : the reciprocal of the number of categories;
Strings : whether STRINGS were used as markers.

This can be interpreted as saying that, other factors being held constant: the random problems give
success rates on average 31.3% below other problems; TEFF strings give success rates 6.6%
above the expectation for other marker types; while 83/k is an estimate of the effect of varying k,
the number of different categories, on percentage of correct classifications. For instance, using
TEFF substrings on a non-random problem with only 2 categories the success rate predicted by
this formula is 88.31%

Of course the range of problems and markers used here is restricted, so no great weight should be
given to the precise values of these regression coefficients; but this analysis does suggest that
while random problems are much harder than the rest, the difference in difficulty between
authorship, chronology and content-based classification problems is relatively minor. It also
confirms the small but significant superiority of STRINGS found by TEFF (the extended Monte-
Carlo Feature-Finder) as compared with the other marker types.
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10. Discussion

In this study we have attempted to examine the question of where stylometric indicators come
from, a question that has, broadly speaking, only been answered implicitly by previous stylometric
researchers. In doing so, we have arrived empirically at a preliminary `pecking order' among
stylistic marker types based on results obtained on a benchmark suite of text classification
problems. This ranking suggests that letter frequencies are less effective than other sorts of textual
markers which share with letters the desirable properties of being easy to compute and applicable
to a range of languages, such as common words or digrams. Thus researchers who employ letters
in preference to common words or digrams in future stylometric studies may well be wasting
information.

The two novel types of textual marker tested in this paper performed creditably. We propose that
they both merit serious consideration by future researchers in this area.

Doublets obtained by progressive pairwise chunking would appear to be at least as informative as
common words or digrams. Strings obtained by Monte-Carlo Feature-Finding gave significantly
better results than the other types. While this study is limited in scope, our results do suggest that
the emphasis on the word as the primary type of linguistic indicator may be counter-productive.

Of course this conclusion only carries force to the extent that the benchmark suite used here
(Tbench95) is adequate, and it can only be regarded as a prototype. Nevertheless the very idea of
using an agreed suite of benchmark problems to help provide an empirical perspective on various
aspects of text classification is in itself, we believe, a contribution to stylometry; and while
Tbench95 is admittedly imperfect, it provides a starting point for future developments.

We have also demonstrated here the feasibility of successfully classifying quite short text
segments -- kilobyte lines, well under 200 words long on average. This we hope will encourage
further work on the precise relationship between likely classification accuracy and size of text
unit. To date, so it would appear from Table 1, stylometrists have `played safe' and used rather
long stretches of text -- longer than strictly necessary. It would be useful to have more empirical
data on this issue, to help future workers make an informed trade-off between size and accuracy.
The present study at least provides a data point away from the norm.

Much else remains to be done. Two avenues which we intend to follow concern: (1) combining
lexical markers such as used here with syntactic markers (as used, for instance, by Wickmann,
1976) and/or semantic markers (as used, for instance, by Martindale & McKenzie, 1995); (2)
investigating interaction effects between problem type (e.g. authorship versus chronology) and
marker type. A more extensive benchmark suite might allow investigation of whether certain
types of marker are better with certain types of problem. For example: are common words better
in authorship studies while TEFF markers work better on content-based discriminations? There
was some suggestion of this in the figures obtained here, but the results are inconclusive. An
extended benchmark suite would permit serious investigation of such questions.
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Finally, more work is needed on feature-selection as well as feature-finding. By most standards,
96 is rather too many variables for convenience. (Even 26 variables would be considered a large
feature set in some quarters.) Certainly, just showing a user a list of 96 textual features, even if
they are presented in order of distinctiveness, is unlikely to promote deep insight into the nature of
the differences between the text types being studied. If, however, equivalent (or better)
performance could be achieved with a reduced subset of markers then the development of an
accurate classifier using them would have the beneficial side-effect of promoting deeper insight
into the data -- possibly an even more valuable outcome than just having a good classification
rule. Initial experiments to this end, using a simple stepwise forward-selection procedure, have
proved disappointing. It remains to be seen whether it is intrinsic to the nature of text that accurate
classification requires the use of many indicators or whether a more efficient variable-selection
algorithm, such as a genetic algorithm or simulated annealing (Siedlecki & Sklansky, 1988;
Reeves, 1995), would eliminate this problem.

Goldberg (1995) has argued that textual features have some inherent characteristics --
infrequency, skewed distribution, and high variance -- which together imply that simple yet robust
classification rules using just a handful of descriptors will seldom if ever be found for linguistic
materials. This is an interesting conjecture, which we believe is worth attempting to falsify. A
variable-selection program, which could reduce the number of textual features needed for
successful text classification from around 100 to less than 20 would settle this question. It would
also be a useful text-analytic tool. Moreover, a serious attempt to develop such a tool, even if it
ended in failure, would have interesting implications, since it would tend to corroborate
Goldberg's thesis. We hope to pursue this line of investigation in future studies.
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Appendix A : Details of Benchmark Data Sets

The 10 text-classification problems that constitute TBench95 (Text Benchmark Suite, 1995
edition) form an enhanced version of the test suite used by Forsyth (1995). They also constitute a
potentially valuable resource for future studies in text analysis. Collecting and editing Tbench95
has been an arduous chore, but enhancing and maintaining it could become a full-time job.
Already some of the problems of corpus management (Aijmer & Altenberg, 1991) have presented
themselves. It is hoped that support to overcome such problems may in due course be
forthcoming, so that successors to Tbench95 may offer a genuine resource to the research
community. Ideally they could be made publicly available, e.g. on the Internet, for comparative
studies; but, as some of the original texts used are still under copyright, the best way of doing this
will require legal advice.

Summary information about the selection of works from various authors and subdivision into
training and test files is contained in section 2. Here this is amplified by giving further details
concerning the sources and sizes of the texts used in the benchmark suite.

NOTE: A policy adhered to throughout was never to split a single work (article, essay,
poem or song) between training and test sets.

A.1 Sources of Benchmark Data

Authorship

NAMESAKE (4 classes): Poetry by Bob Dylan and Dylan Thomas.

Songs by Bob Dylan (born Robert A. Zimmerman) were obtained from Lyrics 1962-1985
(Dylan, 1994). In addition, two tracks from the album Knocked Out Loaded
(Dylan, 1988) and the whole A-side of Oh Mercy (Dylan, 1989) were transcribed
by hand and included, to give fuller coverage. An electronic version of Lyrics
1962-1985 is apparently available from the Oxford Text Archive, but this was not
known until after this selection had been compiled. Further information about the
Oxford Text Archive can be obtained by sending an electronic mail message to

ARCHIVE@vax.oxford.ac.uk

Poems of Dylan Thomas were obtained from Collected Poems 1934-1952 (Thomas, 1952)
with four more early works added from Dylan Thomas: the Notebook Poems
1930-1934 (Maud, 1989). Most were typed in by hand.

EZRA (3 classes): Poems by Ezra Pound, T.S. Eliot and William B. Yeats -- three
contemporaries who influenced each other's writings. For example, Pound is known to
have given editorial assistance to Yeats and, famously, Eliot (Kamm, 1993).

A random selection of poems by Ezra Pound written up to 1926 was taken from Selected
Poems 1908-1969 (Pound, 1977), and entered by hand. It was supplemented by
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random selection of 18 pre-1948 Cantos, obtained from the Oxford Text Archive.
Poems by T.S. Eliot were from Collected Poems 1909-1962 (Eliot, 1963), scanned
then edited by hand. A random selection of 148 poems by W.B. Yeats was taken
from the Oxford Text Archive. For checking purposes Collected Poems (Yeats,
1961) was used.

As is usual in machine learning the data was divided into training and testing sets. In the above
cases this division was made by arranging each author's files in order and assigning them
alternately to to test or training sets. As this data is held (with a few exceptions) in files each of
which contains writings composed by one author in a single year, this mode of division meant that
works composed at about the same time were usually kept together; and, even more important,
that single poems were never split between test and training files. The effect of this file-based
blocking is presumably to make these tests somewhat more stringent than purely random
allocation of individual poems to test and training sets would have been.

FEDS (2 classes): A selection of papers by two Federalist authors, Hamilton and Madison. This
celebrated, and difficult, authorship problem -- subject of a ground-breaking stylometric
analysis by Moseller & Wallace (1984 [1964]) -- is possibly the best candidate for an
accepted benchmark in this field.

An electronic text of the entire Federalist papers was obtained by anonymous ftp from
Project Gutenberg at

GUTNBERG@vmd.cso.uiuc.edu
For checking purposes the Dent Everyman edition was used (Hamilton et al., 1992

[1788]). Here the division into test and training sets was as follows.

Author Training paper numbers Test paper numbers

Hamilton 6, 7, 9, 11, 12, 17, 22, 27, 32, 36,
61, 67, 68, 69, 73, 76, 81

1, 13, 16, 21, 29, 30, 31, 34, 35, 60,
65, 75, 85

Madison 10, 14, 37-48 49-58, 62, 63

Thus, for Madison, all undisputed papers constitute the training set while the `disputed' papers
constitute his test sample. This implies that we accept the view expounded by Martindale &
McKenzie (1995), who state that: "Mosteller and Wallace's conclusion that Madison wrote the
disputed Federalist papers is so firmly established that we may take it as given." For Hamilton, a
random selection of 17 papers was chosen as a training sample with another random selection of
13 papers as test set, giving test and training sets of roughly the same size as Madison's.

Chronology / English Poetry

ED(2 classes): Poems by Emily Dickinson, early work being written up to 1863 and later
work being written after 1863. Emily Dickinson had a great surge of poetic
composition in 1862 and a lesser peak in 1864, after which her output tailed off
gradually. The work included was all of A Choice of Emily Dickinson's Verse
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selected by Ted Hughes (Hughes, 1993) as well as a random selection of 32 other
poems from the Complete Poems (edited by T.H. Johnson, 1970). Data was
entered by hand.

JP(3 classes): Poems by John Pudney, divided into three classes. The first category came
from Selected Poems (Pudney, 1946) and For Johnny: Poems of World War II
(Pudney, 1976); the second from Spill Out (Pudney, 1967) and the third from
Spandrels (Pudney, 1969). All poems in these four books were used.

John Pudney (1909-1977) described his career as follows: "My poetic life has been a
football match. The war poems were the first half. Then an interval of ten years.
Then another go of poetry from 1967 to the present time" (Pudney, 1976). Here the
task is to distinguish his war poems (published before 1948) from poems in two
other volumes, published in 1967 and 1969 -- i.e. there are three categories.

WY(2 classes): Early and late poems of W.B. Yeats. Early work taken as written up to
1914, the start of the First World War, and later work being written in or after
1916, the date of the Irish Easter Rising, which had a profound effect on Yeats's
beliefs about what poetry should aim to achieve. Same source as in EZRA, above.

For these problems the classification objective was to discriminate between early and late works
by the same poet. The division into test and training sets for Emily Dickinson and Yeats was once
again file-based: in these cases the files of each poet were ordered chronologically and assigned
alternately (i.e. from odd then even positions in the sequence) to two sets. The larger of the two
resulting files was designated as training and the smaller as test file. With John Pudney, each book
was divided into test and training sets by random allocation of individual poems.

Subject-Matter

MAGS (2 classes): This used articles from two academic journals Literary and Linguistic
Computing and Machine Learning. The task was to classify texts according to which
journal they came from. In fact, each `article' consisted of the Abstract and first paragraph
of a single paper. These were selected by taking a haphazard subset of the volumes
actually present on the shelves in UWE's Bolland Library on two separate days, then
scanning in (photocopies of) the relevant portions and editing them. The results were as
follows.
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Literary & Linguistic Computing Machine Learning

Year Articles Words Year Articles Words

1987 1 229

1988 1 200

1989 1 235

1990 24 6629 1990 15 4069

1991 17 4715 1991 12 3598

1992 15 4489 1992 27 7788

1993 12 3331 1993 6 2041

1994 5 1152 1994 4 1369

1995 2 547 1995 2 530

For both journals the articles from even years were used as the training sample and those from odd
years the test sample.

TROY (2 classes): Electronic versions of the complete texts of Homer's Iliad and Odyssey, both
transliterated into the Roman alphabet in the same manner, were kindly supplied by
Professor Colin Martindale of the University of Maine at Orono. Traditionally each book
is divided into 24 sections or `books'.

For both works the training sample comprised the odd-numbered books and the test sample
consisted of the even-numbered books. The task was to tell which work each kilobyte line
came from.

Randomized Data

AUGUSTAN (2 classes): The Augustan Prose Sample donated by Louis T. Milic to the Oxford
Text Archive. For details of the rationale behind this corpus and its later development, see
Milic (1990). This data consists of extracts by many English authors during the period
1678 to 1725. It is held as a sequence of records each of which contains a single sentence.
Sentence boundaries as identified by Milic were respected.

To obtain test and training sets a program was written to allocate sentences at random to four files.
The larger two of these were then treated as training sets, the smaller two as test data.

RASSELAS (2 classes): The complete text of Rasselas by Samuel Johnson, written in 1759. This
was obtained in electronic form from the Oxford Text Archive. For checking purposes, the
Clarendon Press edition was used (Johnson, 1927 [1759]). This novel consists of 49
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chapters. These were allocated alternately to four different files. Files 2 and 4 became the
training data; files 1 and 3 were used as test sets.

The inclusion of random or quasi-random data may need a few words in justification. The chief
objective of doing so here, was to provide an opportunity for what statisticians call overfitting to
manifest itself. If any of the approaches tested is prone to systematic overfitting -- in the sense of
exploiting random peculiarities in the training data -- then this last pair of problems will tend to
reveal it. A success rate significantly below chance expectation on either of these data sets would
be evidence of overfitting. Our view is that, as a general rule, some `null' cases should form part
of any benchmark suite: as well as finding what patterns do exist, a good classifier should avoid
finding patterns that don't exist.

A.2 Sizes of Benchmark Problems

Problem Categories Kilobytes
(training, test)

DYLANS Bob Dylan
Dylan Thomas

67, 65
45, 41

EZRA Ezra Pound
T.S. Eliot
W.B Yeats

80, 79
49, 40
109, 86

FEDS Alexander Hamilton
James Madison

218, 148
227, 140

ED Emily Dickinson to 1863
after 1863

28, 23
23, 17

JP John Pudney: War Poems
Poems from Spill Out
Poems from Spandrels

16, 10
17, 15
22, 20

WY W.B. Yeats to 1914
after 1915

61, 34
52, 47

MAGS Lit. & Ling. Computing
Machine Learning

78, 54
88, 44

TROY Iliad
Odyssey

346, 308
251, 255

AUGUSTAN Random sentences
Random sentences

121, 104
108, 108

RASSELAS Even-numbered chapters
Odd-numbered chapters

60, 45
52, 48
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