
Page 1 of 18

VOCSOFT Stylometric Software

(User Notes by Richard Forsyth, November 2015)

This pair of Python3 programs makes it possible to perform the kind of stylometric analyses
of text files pioneered by John Burrows and associates (Burrows, 1987, 1992; Burrows &
Craig, 2001).

Why I Wrote this Software
I wrote an early version of these programs in Snobol (Spitbol implementation) in 1994. Then
in 2007 I developed slightly enhanced versions in Python2. I stopped using Python2 in 2010,
so I have been meaning to upgrade them for a while, and was prompted to do so in 2015 by
a user request. The recent Python3 edition is, I believe, an improvement on its
predecessors.

The main point of the software is to enable a Burrows-inspired approach to document
analysis. In a nutshell, the first program (dox2vox.py) reads a corpus of text files and
produces from it a vocabulary listing. The second program (vox2dat.py) takes in a
vocabulary listing such as produced by dox2vox.py as well as reading the same or another
corpus and produces a data file in a format that can conveniently be imported into R (R Core
Team, 2013) for further processing. Each row of that data file describes a text document
from the input corpus. The columns give scores for each text on a number of measures. The
first few columns are basic housekeeping data; the next 10 (which may be added to) are a
variety of vocabulary-richness scores; the rest are percentage occurrence rates of the
wordforms in the input vocabulary file. The number of wordforms whose occurrence rates
will be written to file is chosen by the user.

A major reason for splitting the overall task into two is that it gives a user the chance to
hand-edit the vocabulary file produced by dox2vox.py before it is used by vox2dat.py. It also
permits one corpus to be analyzed using the vocabulary of another corpus.

In summary, vocsoft is a front-end for analyses to be carried out in R (or similar systems),
such as Principal Components Analysis, Cluster Analysis, Discriminant Analysis and suchlike. I
find this division of labour convenient since, in my view, Python3 is better for text and string
processing whilst R is more suited to statistical calculations.

Setting Up
First you need Python3. If you don't have it already, the latest version can be downloaded
and installed from the Python website: www.python.org. This is usually quite
straightforward. The only snag is if you have Python2 and want to keep using it. Then you'll
probably have to set up a specific command to run whichever version you use less
frequently.

Next step is to unpack the vocsoft.zip file. After unpacking it (into a top-level folder called
"vocsoft", unless you want to do quite a lot of editing), you should find the following
subfolders.

http://www.python.org/

Page 2 of 18

op
p3
parapath
samples

The programs are in p3. Sample corpora for testing will be found in samples. Subfolder op is
the default location for output files and parapath is a convenient place for storing
parameter files, which will be explained later. In Windows, it is most convenient to install
vocsoft at the top level of the C:\ drive, at least to start with.

Corpus Format
Vocsoft is a document-oriented system. Thus an input corpus consists of a number of text
files (in UTF8 encoding). Each file is treated as an individual document. Ideally each file
should contain running text without markup. Markup (e.g. HTML, SGML & suchlike) is not
handled well, so running these programs on marked-up documents will usually give strange
results.

In the samples folder you will find 6 subfolders (bottlabs, britfict, cics, ew, feds and
tedtrans). These contain data sets that enable you to start using the system, prior to
collecting &/or reformatting your own corpora.

The first, bottlabs, contains a small corpus of back-label texts from beverage bottles, mostly
beer and wine.

The second, britfict, contains 36 fictional texts written by 12 different British authors. Most
are complete novels, though three are chapters or sections from larger works.

The second contains writings by several Latin authors, the three main ones being: Marcus
Tullius Cicero, the famous Roman orator, Mark-Antoine Muret, known as Muretus, and
Carlo Sigonio. This dataset arises from an interesting authorship problem. Background
information can be found in Forsyth et al. (1999), but in a nutshell the problem revolves
around a work called the Consolatio which Cicero wrote in 45 BC. This was thought to have
been lost until in 1583 AD when Carlo Sigonio claimed to have rediscovered it. He died the
following year never having made public the manuscript, but published a printed version in
Venice with himself named as editor. Scholars have argued since then over whether the
book is genuinely a rediscovery of Cicero's lost work or a renaissance fake.

The subfolder ew contains 46 short stories by Edith Wharton as well as 6 chapters from her
novels and some comparison texts by Henry James and Marion Mainwaring. This corpus is
interesting because when Edith Wharton died in 1937 she left her novel The Buccaneers
unfinished. It was later completed by Marion Mainwaring in 1993. Two chapters by Wharton
as well as 2 by Mainwaring are included in the sample on disk.

The feds subfolder contains writings by Alexander Hamilton and James Madison, as well as
some contemporaries of theirs. This is related to another notable authorship dispute,
concerning the Federalist Papers, which were published in New York in 1788. Of the 85

Page 3 of 18

essays in that book, 51 are known to have been written by Hamilton, 14 by Madison, 5 by
John Jay and 3 jointly by Hamilton and Madison together. That left 12 disputed papers
(numbers 49-58 and 62-63) claimed by both Hamilton and Madison. For more background
see Holmes & Forsyth (1995).

The tedtrans subfolder contains 1555 transcripts of talks, in English, given under the
TED.com initiative. Obtained from collection held at WIT3 website https://wit3.fbk.eu .

Running DOX2VOX
This program reads in a corpus of texts and produces a frequency-ordered list of vocabulary
items in 2 versions, one machine-readable (for input to vox2dat.py) and the other intended
to be more readable by humans. When you run it, it will ask you to type in a jobname. This
should be an alphanumeric string which will be used to link together the output files
produced so that they can be seen to be part of the same project. It can also be used as a
way of supplying nonstandard parameter settings to the program, as will be explained
below.

You should see on screen something like the listing below, which comes from a run using
the britfict corpus as input. In this example the program is executed at the command line
from another working directory (c:\2015\) which means that the full path of the program
has to be given.

c:\2015>python c:\vocsoft\p3\dox2vox.py

C:\vocsoft\p3\dox2vox.py 1.4 Fri Nov 13 16:41:42 2015

command-line args. = 1

progpath : C:\vocsoft\p3

working folder: C:\2015

please give jobname : ew

ew to be used as jobname.

jobname [ew] :

atomize [1] :

casefold [1] :

docpaths : c:\vocsoft\samples\britfict\novs

docpaths = c:\vocsoft\samples\britfict\novs

filetail [.txt] :

outpath [C:\vocsoft\op] :

snipsize [115] : 1024

snipsize = 1024

topvocs [144] :

vocdump [ew_vocs.dat] :

vocfile [ew_vocs.txt] :

wordonly [1] :

please choose sortcol

0 corprate

1 docrate

2 sniprate

3 textmean

4 textmid

Give option number: 2

Mode 2 chosen : sniprate

sortcol = sniprate

c:\vocsoft\samples\britfict\novs\

files found on c:\vocsoft\samples\britfict\novs\ = 36

texts read from c:\vocsoft\samples\britfict\novs\ = 36

total word tokens = 7140077

total vocabulary size = 60503

tokens occuring at least 3 times = 32514

wordform lines = 144

Page 4 of 18

vocabulary listing on C:\vocsoft\op\ew_vocs.txt

data values listed on C:\vocsoft\op\ew_vocs.dat

C:\vocsoft\p3\dox2vox.py done on Fri Nov 13 16:43:02 2015

after 79.8477452 seconds.

User inputs required here have been marked in bold face, i.e. the program launch
command, the jobname, the document input path specification, the nonstandard value for
the parameter 'snipsize' and the choice of 'sniprate' as the sorting criterion. The effect of
the parameters is described in the next section.

Notice that in the listing above the portion from "please give jobname" to "Give option
number" is where the user gives input values for a number of program parameters. Where
the program already has computed a default value, there is an item within square brackets
indicating that value. In such cases just pressing the "Enter" key (= "hitting Return") will
select that default value. The idea is to save typing. Where the user gives an input other
than hitting return, i.e. overrides the default, the value given is echoed after an equal-sign.
These user-input conventions are also used by vox2dat.py.

Interpreting the output listing of dox2vox.py
The listing below shows the output file ew_vocs.txt derived from the run above. This is the
output intended for human inspection.

` rank corpfreq docfreq snipfreq corprate corpsum docrate sniprate textmean textmid

the 1 299673 36 6967 4.20 4.20 100.00 100.00 4.50 4.28

and 2 231541 36 6967 3.24 7.44 100.00 100.00 3.26 3.20

to 3 226027 36 6967 3.17 10.61 100.00 100.00 3.02 2.99

of 4 182590 36 6967 2.56 13.16 100.00 100.00 2.63 2.48

a 5 146385 36 6967 2.05 15.21 100.00 100.00 2.10 2.16

in 6 113186 36 6967 1.59 16.80 100.00 100.00 1.62 1.63

that 7 98096 36 6967 1.37 18.17 100.00 100.00 1.30 1.18

with 8 61841 36 6965 0.87 19.04 100.00 99.97 0.87 0.88

as 9 70781 36 6964 0.99 20.03 100.00 99.96 0.96 0.95

it 10 84883 36 6963 1.19 21.22 100.00 99.94 1.24 1.17

for 11 61993 36 6960 0.87 22.09 100.00 99.90 0.84 0.79

but 12 51499 36 6951 0.72 22.81 100.00 99.77 0.70 0.67

not 13 61663 36 6943 0.86 23.67 100.00 99.66 0.83 0.80

be 14 57439 36 6928 0.80 24.48 100.00 99.44 0.73 0.67

at 15 45193 36 6920 0.63 25.11 100.00 99.33 0.65 0.64

was 16 85962 36 6878 1.20 26.31 100.00 98.72 1.29 1.40

have 17 49223 36 6852 0.69 27.00 100.00 98.35 0.64 0.62

had 18 61660 36 6845 0.86 27.87 100.00 98.25 0.90 0.89

by 19 31121 36 6804 0.44 28.30 100.00 97.66 0.44 0.43

on 20 35493 36 6781 0.50 28.80 100.00 97.33 0.51 0.54

all 21 30462 36 6776 0.43 29.23 100.00 97.26 0.42 0.42

so 22 35141 36 6774 0.49 29.72 100.00 97.23 0.47 0.48

this 23 33143 36 6765 0.46 30.18 100.00 97.10 0.45 0.39

i 24 167132 36 6736 2.34 32.52 100.00 96.68 2.21 1.95

his 25 71990 36 6709 1.01 33.53 100.00 96.30 1.06 1.04

he 26 91701 36 6701 1.28 34.82 100.00 96.18 1.33 1.24

from 27 25729 36 6679 0.36 35.18 100.00 95.87 0.36 0.36

is 28 45972 36 6619 0.64 35.82 100.00 95.01 0.60 0.59

which 29 33017 36 6614 0.46 36.28 100.00 94.93 0.47 0.41

no 30 24954 36 6609 0.35 36.63 100.00 94.86 0.36 0.37

if 31 27596 36 6553 0.39 37.02 100.00 94.06 0.36 0.36

would 32 28948 36 6522 0.41 37.42 100.00 93.61 0.39 0.37

when 33 21937 36 6477 0.31 37.73 100.00 92.97 0.30 0.30

one 34 20475 36 6469 0.29 38.02 100.00 92.85 0.29 0.27

what 35 25027 36 6460 0.35 38.37 100.00 92.72 0.33 0.33

an 36 20948 36 6424 0.29 38.66 100.00 92.21 0.30 0.29

him 37 39658 36 6394 0.56 39.22 100.00 91.78 0.58 0.57

you 38 83134 36 6379 1.16 40.38 100.00 91.56 1.10 1.10

or 39 22949 36 6369 0.32 40.70 100.00 91.42 0.32 0.31

been 40 21743 36 6292 0.30 41.01 100.00 90.31 0.30 0.28

my 41 65568 36 6286 0.92 41.92 100.00 90.23 0.81 0.57

her 42 79189 35 6217 1.11 43.03 97.22 89.23 1.04 1.07

were 43 21244 36 6188 0.30 43.33 100.00 88.82 0.32 0.33

very 44 19957 36 6180 0.28 43.61 100.00 88.70 0.29 0.25

there 45 19440 36 6139 0.27 43.88 100.00 88.12 0.29 0.28

more 46 16805 36 6122 0.24 44.12 100.00 87.87 0.23 0.22

me 47 49397 36 6120 0.69 44.81 100.00 87.84 0.61 0.48

said 48 35188 36 6059 0.49 45.30 100.00 86.97 0.50 0.44

who 49 19482 36 6007 0.27 45.58 100.00 86.22 0.27 0.24

could 50 17983 36 6007 0.25 45.83 100.00 86.22 0.27 0.25

Page 5 of 18

than 51 14968 36 5914 0.21 46.04 100.00 84.89 0.21 0.19

now 52 15575 36 5905 0.22 46.26 100.00 84.76 0.21 0.22

she 53 59181 36 5879 0.83 47.08 100.00 84.38 0.79 0.80

out 54 15837 36 5876 0.22 47.31 100.00 84.34 0.23 0.22

they 55 20608 36 5854 0.29 47.60 100.00 84.02 0.30 0.28

do 56 18050 36 5800 0.25 47.85 100.00 83.25 0.25 0.25

any 57 15054 36 5749 0.21 48.06 100.00 82.52 0.21 0.19

will 58 24949 36 5672 0.35 48.41 100.00 81.41 0.28 0.25

up 59 14294 36 5647 0.20 48.61 100.00 81.05 0.21 0.20

them 60 16161 36 5631 0.23 48.83 100.00 80.82 0.24 0.21

are 61 17972 36 5630 0.25 49.09 100.00 80.81 0.24 0.23

should 62 15394 36 5606 0.22 49.30 100.00 80.47 0.20 0.20

into 63 12599 36 5553 0.18 49.48 100.00 79.70 0.18 0.18

much 64 12783 36 5533 0.18 49.66 100.00 79.42 0.18 0.17

then 65 13541 36 5525 0.19 49.85 100.00 79.30 0.19 0.18

such 66 13783 36 5501 0.19 50.04 100.00 78.96 0.18 0.16

little 67 14082 36 5489 0.20 50.24 100.00 78.79 0.20 0.19

some 68 12293 36 5452 0.17 50.41 100.00 78.25 0.18 0.17

well 69 12546 36 5403 0.18 50.59 100.00 77.55 0.17 0.16

good 70 12861 36 5364 0.18 50.77 100.00 76.99 0.17 0.17

know 71 13284 36 5268 0.19 50.95 100.00 75.61 0.18 0.19

mr 72 29078 36 5249 0.41 51.36 100.00 75.34 0.37 0.30

before 73 10569 36 5238 0.15 51.51 100.00 75.18 0.15 0.15

time 74 10743 36 5235 0.15 51.66 100.00 75.14 0.16 0.16

own 75 11541 36 5191 0.16 51.82 100.00 74.51 0.15 0.15

never 76 11344 36 5122 0.16 51.98 100.00 73.52 0.16 0.16

your 77 24516 36 5095 0.34 52.32 100.00 73.13 0.28 0.24

did 78 11638 36 5088 0.16 52.48 100.00 73.03 0.17 0.16

say 79 11370 36 5084 0.16 52.64 100.00 72.97 0.15 0.13

must 80 11808 36 5069 0.17 52.81 100.00 72.76 0.15 0.15

man 81 13599 36 5062 0.19 53.00 100.00 72.66 0.19 0.19

made 82 9671 36 5045 0.14 53.13 100.00 72.41 0.13 0.13

other 83 9906 36 5038 0.14 53.27 100.00 72.31 0.14 0.14

only 84 9657 36 5035 0.14 53.41 100.00 72.27 0.14 0.13

upon 85 14349 36 5028 0.20 53.61 100.00 72.17 0.20 0.17

about 86 11439 36 4961 0.16 53.77 100.00 71.21 0.17 0.15

how 87 11409 36 4954 0.16 53.93 100.00 71.11 0.15 0.15

think 88 11609 36 4948 0.16 54.09 100.00 71.02 0.15 0.14

see 89 10867 36 4934 0.15 54.24 100.00 70.82 0.14 0.14

we 90 16139 36 4922 0.23 54.47 100.00 70.65 0.21 0.19

too 91 9451 36 4881 0.13 54.60 100.00 70.06 0.13 0.12

their 92 13495 36 4796 0.19 54.79 100.00 68.84 0.19 0.19

after 93 8446 36 4662 0.12 54.91 100.00 66.92 0.12 0.12

can 94 10751 36 4646 0.15 55.06 100.00 66.69 0.14 0.13

am 95 12636 36 4621 0.18 55.24 100.00 66.33 0.15 0.15

like 96 9713 36 4594 0.14 55.37 100.00 65.94 0.14 0.13

thought 97 8694 36 4583 0.12 55.50 100.00 65.78 0.12 0.12

might 98 8934 36 4536 0.13 55.62 100.00 65.11 0.13 0.11

make 99 8401 36 4520 0.12 55.74 100.00 64.88 0.11 0.10

may 100 10390 36 4514 0.15 55.88 100.00 64.79 0.12 0.10

has 101 12607 36 4497 0.18 56.06 100.00 64.55 0.15 0.13

great 102 8517 36 4445 0.12 56.18 100.00 63.80 0.12 0.11

come 103 9088 36 4439 0.13 56.31 100.00 63.71 0.12 0.12

over 104 7370 36 4210 0.10 56.41 100.00 60.43 0.11 0.10

himself 105 8760 36 4187 0.12 56.53 100.00 60.10 0.13 0.11

down 106 7952 36 4186 0.11 56.64 100.00 60.08 0.12 0.11

being 107 7329 36 4176 0.10 56.75 100.00 59.94 0.11 0.10

two 108 7345 36 4175 0.10 56.85 100.00 59.93 0.11 0.11

way 109 7082 36 4151 0.10 56.95 100.00 59.58 0.10 0.09

though 110 7134 36 4142 0.10 57.05 100.00 59.45 0.10 0.09

first 111 6785 36 4140 0.10 57.14 100.00 59.42 0.10 0.10

go 112 8238 36 4041 0.12 57.26 100.00 58.00 0.11 0.11

yet 113 7139 36 4033 0.10 57.36 100.00 57.89 0.09 0.08

ever 114 6898 36 4017 0.10 57.46 100.00 57.66 0.09 0.09

take 115 6628 36 3990 0.09 57.55 100.00 57.27 0.09 0.09

nothing 116 6880 36 3986 0.10 57.64 100.00 57.21 0.10 0.09

again 117 7340 36 3976 0.10 57.75 100.00 57.07 0.11 0.11

shall 118 9126 36 3954 0.13 57.88 100.00 56.75 0.10 0.09

day 119 7056 36 3944 0.10 57.97 100.00 56.61 0.10 0.10

these 120 6659 36 3939 0.09 58.07 100.00 56.54 0.09 0.09

without 121 6535 36 3932 0.09 58.16 100.00 56.44 0.10 0.09

most 122 6708 36 3886 0.09 58.25 100.00 55.78 0.10 0.09

every 123 7159 36 3794 0.10 58.35 100.00 54.46 0.10 0.08

last 124 5915 36 3763 0.08 58.44 100.00 54.01 0.09 0.09

give 125 6159 36 3708 0.09 58.52 100.00 53.22 0.08 0.07

came 126 6133 36 3669 0.09 58.61 100.00 52.66 0.09 0.09

here 127 6503 36 3630 0.09 58.70 100.00 52.10 0.09 0.08

house 128 7033 36 3618 0.10 58.80 100.00 51.93 0.10 0.10

where 129 6291 36 3602 0.09 58.89 100.00 51.70 0.09 0.10

long 130 5614 36 3567 0.08 58.96 100.00 51.20 0.08 0.09

hand 131 6176 36 3538 0.09 59.05 100.00 50.78 0.09 0.09

mind 132 5561 36 3524 0.08 59.13 100.00 50.58 0.08 0.08

our 133 7492 36 3511 0.10 59.23 100.00 50.39 0.10 0.10

mrs 134 12762 34 3501 0.18 59.41 94.44 50.25 0.17 0.14

life 135 5752 36 3490 0.08 59.49 100.00 50.09 0.08 0.08

us 136 7111 36 3472 0.10 59.59 100.00 49.83 0.09 0.09

better 137 5381 36 3462 0.08 59.67 100.00 49.69 0.08 0.07

indeed 138 5752 36 3451 0.08 59.75 100.00 49.53 0.07 0.06

Page 6 of 18

let 139 6166 36 3449 0.09 59.84 100.00 49.50 0.08 0.07

those 140 5552 36 3437 0.08 59.91 100.00 49.33 0.07 0.07

myself 141 6520 36 3426 0.09 60.00 100.00 49.17 0.08 0.08

always 142 5622 36 3408 0.08 60.08 100.00 48.92 0.07 0.07

once 143 4959 36 3403 0.07 60.15 100.00 48.84 0.07 0.07

away 144 5585 36 3390 0.08 60.23 100.00 48.66 0.08 0.08

Parameter settings :

atomize 1

casefold 1

dateline Fri Nov 13 16:41:42 2015

doclist <class 'list'> of 36 items.

docpath c:\vocsoft\samples\britfict\novs\

docpaths c:\vocsoft\samples\britfict\novs\

docs 36

dumpname C:\vocsoft\op\ew_vocs.dat

filetail .txt

id C:\vocsoft\p3\dox2vox.py

jobname ew

minfreq 3

outpath C:\vocsoft\op\

pathlist ['c:\\vocsoft\\samples\\britfict\\novs\\']

progname C:\vocsoft\p3\dox2vox.py

progpath C:\vocsoft\p3\

punxtab <class 'dict'> of 25 items.

snipsize 1024

sortcol sniprate

topvocs 144

totsnips 6967

tottoks 7140077

vocdump ew_vocs.dat

vocfile ew_vocs.txt

vocsize 60503

voutname C:\vocsoft\op\ew_vocs.txt

whereat C:\vocsoft\p3\

wordonly 1

zonk 0

In this output the most frequent 144 wordforms in the input corpus have been listed in
descending order (followed by a dump of the program's parameter settings, which can be
very useful for checking purposes: see Appendix). The question is: what does "most
frequent" mean? In this case the ordering is determined by 'sniprate'. This is computed as
the percentage of snippets in which the wordform occurs. A snippet is a block of text of a
fixed size, given by the 'snipsize' parameter, which was set to 1024 above. The normal
default for snipsize is 115, the number of words in Shakespeare's 18th sonnet, but with full-
length novels such as in the britfict sample, that leads to rather too many snippets for
convenience.

From the output above, it can be seen that the first 7 words, from 'the' to 'that' occur in
100% of the snippets in this corpus. Even the 144th item by rank, 'away', occurs in almost
half of the snippets (48.66%). The options for frequency ordering are as follows.

ordering
criterion

meaning

corprate This is simply the relative frequency, expressed as a percentage, in the
corpus as a whole, i.e. the total number of occurrences of the wordform
divided by the total number of tokens in the corpus (multiplied by 100). It
is the default value if none other is given; and it is what is generally meant
by loose usage of the term 'frequency'.

docrate This is the percentage of documents in which the wordform occurs. With
large documents, as in the case above, many common words will have a
docrate of 100 percent.

sniprate This is the percentage of 'snippets' (of size given by 'snipsize') in which the
wordform is found.

Page 7 of 18

textmean This is computed by calculating the percentage occurrence rate of the
wordform in every input document and then calculating the mean
(arithmetic average) of those rates.

textmid This is computed by calculating the percentage occurrence rate of the
wordform in every input document and then calculating the median of
those rates.

Most of the vocabulary items in a listing such as that above are frequent function words that
would be considered "stop words" in the context of Information Retrieval. Such words have
proved very useful in stylometry, particularly as authorial markers (e.g. Mosteller & Wallace,
1984; Burrows, 1992; Holmes, 1994).

It can be seen from this listing that the order determined by 'sniprate' is not the same as
what would be imposed by using any of the other sorting columns. For example, the word
"i" (mostly the first-person pronoun "I", probably with a few instances of the Roman
numeral I confounded by case folding (implied by 'wordonly' being equal to 1)) which
appears at rank 24 would come fifth in order on the basis of 'corprate'. The finding that
pronouns are more variable in their distribution is general across many text types.

The machine-readable (.dat) output file
The dox2vox.py program also dumps the selected vocabulary in a tab-delimited format
designed to be read by vox2dat.py (though it can also be easily imported into R). An
abbreviated example, from the run above, is shown below.

wordform rank corpfreq docfreq snipfreq corprate corpsum

 docrate sniprate textmean textmid

the 1 299673 36 6967 4.20 4.20 100.00 100.00 4.50 4.28

and 2 231541 36 6967 3.24 7.44 100.00 100.00 3.26 3.20

to 3 226027 36 6967 3.17 10.61 100.00 100.00 3.02 2.99

of 4 182590 36 6967 2.56 13.16 100.00 100.00 2.63 2.48

a 5 146385 36 6967 2.05 15.21 100.00 100.00 2.10 2.16

in 6 113186 36 6967 1.59 16.80 100.00 100.00 1.62 1.63

that 7 98096 36 6967 1.37 18.17 100.00 100.00 1.30 1.18

with 8 61841 36 6965 0.87 19.04 100.00 99.97 0.87 0.88

as 9 70781 36 6964 0.99 20.03 100.00 99.96 0.96 0.95

it 10 84883 36 6963 1.19 21.22 100.00 99.94 1.24 1.17

....

life 135 5752 36 3490 0.08 59.49 100.00 50.09 0.08 0.08

us 136 7111 36 3472 0.10 59.59 100.00 49.83 0.09 0.09

better 137 5381 36 3462 0.08 59.67 100.00 49.69 0.08 0.07

indeed 138 5752 36 3451 0.08 59.75 100.00 49.53 0.07 0.06

let 139 6166 36 3449 0.09 59.84 100.00 49.50 0.08 0.07

those 140 5552 36 3437 0.08 59.91 100.00 49.33 0.07 0.07

myself 141 6520 36 3426 0.09 60.00 100.00 49.17 0.08 0.08

always 142 5622 36 3408 0.08 60.08 100.00 48.92 0.07 0.07

once 143 4959 36 3403 0.07 60.15 100.00 48.84 0.07 0.07

away 144 5585 36 3390 0.08 60.23 100.00 48.66 0.08 0.08

Here only the first and last 10 items have been retained.

All the various frequency measures are included, but the only column that is read by
vox2dat.py is the first. Thus, if you wish to insert a word into the vocabulary to be used by
vox2dat.py, you don't have to compute any associated statistics. All that is needed is a line
beginning with that word. An example of an external vocabulary file is cobuild.vox which is

Page 8 of 18

included in the samples folder. This lists the 111 most frequent word tokens in the Cobuild
corpus from a time when that corpus contained approximately 7 million words.

Executing VOX2DAT
An example of the kind of screen output resulting from running vox2dat.py (this time from
within the IDLE environment) is shown below. In this case the ew.txt file in the parapath
subdirectory containing the following lines

ew parameter file :

docpaths c:\vocsoft\samples\britfict\novs

folders c:\vocsoft\samples\ew\taletext, c:\vocsoft\samples\ew\holdout2

wordonly 1

was used; thus the 'folders' question, below, was answered simply by hitting return,
selecting the 2 input folders indicated in the parameter file.

>>>

C:\vocsoft\p3\vox2dat.py 1.4 Fri Nov 13 16:48:37 2015

command-line args. = 1

progpath : C:\vocsoft\p3

working folder: C:\vocsoft\p3

please give jobname : ew

ew to be used as jobname.

['C:\\vocsoft\\p3', 'C:\\vocsoft\\parapath', 'C:\\vocsoft']

atomize [1] :

casefold [1] :

datfile [ew_vars.dat] :

filetail [.txt] :

folders [c:\vocsoft\samples\ew\taletext, c:\vocsoft\samples\ew\holdout2] :

outpath [C:\vocsoft\op] :

snipsize [115] : 1024

snipsize = 1024

topvocs [144] :

voxfile [ew_vocs.dat] :

wordonly [1] :

c:\vocsoft\samples\ew\taletext

c:\vocsoft\samples\ew\holdout2

vocabulary items read from ew_vocs.dat = 144

files found on c:\vocsoft\samples\ew\taletext = 44

files found on c:\vocsoft\samples\ew\holdout2 = 13

texts read from c:\vocsoft\samples\ew\taletext, c:\vocsoft\samples\ew\holdout2 = 57

output lines = 57

data values listed on C:\vocsoft\op\ew_vars.dat

C:\vocsoft\p3\vox2dat.py done on Fri Nov 13 16:48:58 2015

after 20.3908069 seconds.

>>>

It should be noted that the program has read its vocabulary from the file ew_vocs.dat, in
other words it expected a file such as produced by dox2vox.py with a name composed of
the jobname with "_vocs.dat" appended. It should also be noted that this input file was
derived from the britfict corpus, but the documents scanned by vox2dat.py are from
c:\vocsoft\samples\ew\taletext and c:\vocsoft\samples\ew\holdout2, as indicated following
the 'folders' question above. In other words, writings by Edith Wharton (and a couple of
relevant comparison authors) are to be analyzed using what might be regarded as a generic
vocabulary of British fiction.

The data grid produced is written onto the file ew_vars.dat. Only the header and first line of
this file are listed below, since its rows have 160 elements so the lines are too wide to

Page 9 of 18

display conveniently. (The full version is on the op subfolder.)

prepath textname filenum totchars tottoks totvocs bw

 diversim haprate herdanc hr v2overv sniphaps

 shsd snipttr stsd the_ and_ to_ of_ a_ in_ that

 with as_ it_ for_ but_ not_ be_ at_ was_ have had_ by_

 on_ all_ so_ this i_ his_ he_ from is_ which no_ if_

 would when one_ what an_ him_ you_ or_ been my_ her_

 were very there more me_ said who_ could than now_ she_

 out_ they do_ any_ will up_ them are_ should into much

 then such little some well good know mr_ before time own_

 never your did_ say_ must man_ made other only upon about

 how_ think see_ we_ too_ their after can_ am_ like thought

 might make may_ has_ great come over himself down being

 two_ way_ though first go_ yet_ ever take nothing again

 shall day_ these without most every last give came here

 house where long hand mind our_ mrs_ life us_ better indeed

 let_ those myself always once away

c:\vocsoft\samples\ew\taletext EW_AfterHolbein.txt 1 48995 8764 2086

 12.1199938 0.9883045 0.5982742 0.8418881 2259.0456372 0.1447747

 31.1401367 1.7268774 44.7265625 1.7312603 5.3400274 3.4345048

 2.7727065 2.247832 1.8370607 1.4376997 1.1980831 0.9128252

 0.8443633 1.1068005 0.4906435 0.5591054 0.5020539 0.2966682

 0.8557736 1.4947513 0.2510269 1.1866728 0.2396166 0.798722

 0.3537198 0.3080785 0.1255135 0.6617983 1.1410315 1.7800091

 0.2282063 0.1939754 0.2852579 0.3537198 0.2510269 0.1711547

 0.2510269 0.3765404 0.2510269 0.2966682 0.5248745 0.5476951

 0.3423094 0.3651301 0.1939754 1.5175719 0.3194888 0.1369238

 0.2053857 0.2053857 0.2510269 0.2738476 0.3194888 0.182565

 0.1369238 0.216796 1.1182109 0.4564126 0.2510269 0.182565

 0.0798722 0.0114103 0.3423094 0.1483341 0.0342309 0.0456413

 0.3194888 0.1026928 0.216796 0.0456413 0.2510269 0.0570516

 0.1939754 0.2053857 0.0912825 0.3765404 0.1369238 0.1026928

 0.0456413 0.1026928 0.0456413 0.1483341 0.1369238 0.0684619

 0.0912825 0.0684619 0.1939754 0.216796 0.0 0.2510269

 0.1369238 0.0570516 0.1141031 0.0570516 0.1939754 0.1369238

 0.216796 0.0342309 0.0 0.1939754 0.3080785 0.0684619

 0.0342309 0.0 0.0114103 0.0456413 0.0684619 0.1711547

 0.2510269 0.2738476 0.0798722 0.1939754 0.1026928 0.0570516

 0.0684619 0.1141031 0.0456413 0.0912825 0.0342309 0.0912825

 0.2053857 0.0684619 0.0570516 0.1026928 0.0342309 0.0570516

 0.1141031 0.1369238 0.0342309 0.0456413 0.0570516 0.1255135

 0.2053857 0.1939754 0.1369238 0.1255135 0.0 0.798722

 0.0342309 0.0228206 0.0912825 0.0 0.0684619 0.0684619

 0.0114103 0.3308991 0.0684619 0.0456413

Information concerning the output variables is given in the table below.

Column name Contents
prepath This is the directory path of the file concerned, up to but excluding the

filename itself.
textname This is the name of the text file concerned, without its directory path

prefix.
filenum This is a serial number, giving the order in which the files were

processed.
totchars This is the total number of characters in the file.

tottoks This is the total number of tokens (which might not always be words) in
the file as computed by the program's tokenizer.

totvocs This is the total number of distinct tokens found in the file, i.e. the
vocabulary size.

Page 10 of 18

bw This is Brunet's W (Brunet, 1978), a measure of vocabulary richness
computed as
W = N ^ (V ^ (-0.169))
where N is tottoks and V is totvocs and the circumflex signifies raising to
the power. (This measure is actually lower with a richer vocabulary.)

diversim This is Simpson's index of diversity (see Upton & Cook, 2006)
S = 1 - ∑(pj ^ 2)
where each pj is the proportion of token j in the overall total -- with the
modification that Hapax Legomena are excluded from the computation.
Unfortunately it is somewhat correlated with text length.

haprate This is the number of Hapax Legomena (once-occurring tokens) in the
text divide by tottoks. It also is unstable across texts of different lengths.

herdanc This is the bilogarithmic Type-Token ratio, also known as Herdan's C
(Herdan, 1960), computed as
C = ln(V) / ln(N)
and it too, alas, varies systematically with text length.

hr This is Honoré's R (Honoré, 1979), computed as
(100 * ln(N)) / (1 - H/(V+0.5))
where H is the number of Hapax Legomena and N and V are as above.
This index is relatively stable across text lengths (above about 1200
tokens) so can be used to compare vocabulary richness among texts of
various sizes (Holmes, 1994; Tweedie & Baayen, 1998).

v2overv This is the number of Dislegomena (twice-occurring tokens) divided by
V, the number of distinct words in the file, an index proposed by Sichel
(1975).

sniphaps This gives the mean (average) number of Hapax Legomena in each
snippet of the file, divided into snippets of size equal to snipsize,
expressed as a percentage.

shsd This gives the standard deviation of the values used to compute
sniphaps.

snipttr This gives the mean type-token ratio as a percentage, 100*V/N, of all
the snippets in the file. Unlike overall TTR, this can be used as a
vocabulary-richness measure among texts of different lengths (provided
they are long enough to contain more than a handful of snippets).

stsd This gives the standard deviation of the values used in computing
snipttr.

.... the remainder The remaining columns give the relative frequencies, expressed as
percentages, of the vocabulary items read in for each text. Short tokens
of less than four characters have an underscore appended, e.g. 'by_', to
avoid confusion with reserved words in packages such as SPSS. Tokens
that aren't entirely alphabetic have a prefix 'v_' added.

What can be done with this kind of output?
The data grid produced is merely a means to an end. The main idea is that it will be read
into R or another statistical system for further processing. For example, the R command

ew = read.delim("c:\\vocsoft\\op\\ew_vars.dat")

Page 11 of 18

would read the data file created above into a data-frame called ew with 57 rows and 160
columns. Incidentally, the first 52 rows of this file refer to writings by Edith Wharton and the
last five by comparison authors. These five include two chapters by Henry James (a mentor
of Wharton) and two by Marion Mainwaring, from the portion she added to complete The
Buccaneers, the novel left unfinished by Wharton. There is also an English translation, made
in 1968, of Les Metteurs which Wharton wrote in French but never translated herself.

A scatter plot produced in R of these 57 texts, where the axes are the values of snipttr and
the percentage occurrence rate of the word 'where', is shown below.

This shows that Marion Mainwaring's additions to The Buccaneers (the 2 green points
marked MM) had a higher snippet-based type-token ratio than all but 1 of Edith Wharton's
texts. This suggest she used a more varied vocabulary. In addition, Mainwaring used the
word 'where' with higher frequency than in any text in the Wharton sample. Thus her
chapters appear as outliers on this plot. The 2 novel chapters by Henry James straddle the
main group of Wharton's works, indicating that they wouldn't be typical of Wharton, though
this pair of variables would not be adequate to distinguish these 2 authors. The translation
from French, by Nolan, is, like Mainwaring's chapters, higher on snipttr than all but 2 of the
57 texts in this sample. This proves nothing in itself, but it does suggest that the hypothesis

Page 12 of 18

that translation, by forcing a translator to think of alternative expressions, may tend to
increase vocabulary richness.

The next two example graphs illustrate another way of looking at this sort of data. In these,
the usage rates in the 52 texts by Edith Wharton have been plotted against calendar year.
The dates concerned can be found in the file ewdates.dat in the ew subfolder of the
samples on disk. They are, as far as can be ascertained, the composition years of the texts
concerned. Whereas her rate of usage of 'upon' declined, especially after 1905, her usage
rate of 'well' increased as she grew older.

Page 13 of 18

Another example is illustrated below. This arises from the bottlabs corpus, a collection of
short texts taken from the back-labels of beverage bottles. In this case, after creating a
vocabulary of 144 items with dox2vox.py and then creating a data grid with vox2dat.py, the
resultant data grid was read into R and subjected to a Principal Components Analysis (PCA)
using the prcomp() built-in function.

The graph shows each of the file names (truncated to 8 characters) positioned in the space
of the first 2 principal components, which account for 22% or the overall variance. Beers are
in black, wines are coloured blue, soft drinks are in green and the sole cider is coloured red.
The main categories, beer and wine, are fairly well separated on these 2 dimensions, with
the soft drinks occupying an intermediate position. Unexpectedly, there seems to be
evidence for 2 distinct subclasses among the beers, separated vertically on the second
dimension above and below the zero point. I haven't yet worked out what factors
distinguish these subgroups. Initial suspicion is that it depends on whether their labels
include a standard warning from the UK Chief Medical Officers concerning alcohol intake.

Finally, the last plot deals with some of the vocabulary richness measures computed by
vox2dat.py. It is derived from running vox2dat.py on the transcripts in the tedtrans folder.
On a single graph it shows how three indices vary with text length -- uncorrected Type-
Token Ratios (TTRs) in black, Herdan's C in red and snipttr (divided by 100 to fit on the same
scale) in green. The lowess() smoothing function of R has been used to overlay smoothed
lines on the points of Herdan's C and snipttr. (TTR is obviously size-dependent to the naked
eye, so no line is overlaid on those points.) It is evident that Herdan's C does decline with
text size, although less markedly than raw TTR. Clearly, snipttr is much less strongly
associated with number of tokens, though even here a slight downward trend is discernible.

Page 14 of 18

Page 15 of 18

Acknowledgements

Texts from the TED initiative (www.ted.com) obtained from
https://wit3.fbk.eu

with thanks.

Thank you for reading this far. :-)

References

Brunet, E. (1978). Vocabulaire de Jean Girandoux: Structure et Évolution. Paris: Slatkine.

Burrows, J.F. (1987). Word-patterns and story-shapes: the statistical analysis of narrative style,
Literary and Linguistic Computing, 2, 61-70.

Burrows, J.F. (1992). Not unless you ask nicely: The interpretive nexus between analysis and
information. Literary and Linguistic Computing, 7, 91–109.

Burrows J.F & Craig D.H. (2001). Lucy Hutchinson and the authorship of two seventeenth-century
poems: a computational approach. The Seventeenth Century, 16, 259-282.

Forsyth, R.S., Holmes, D.I. & Tse, E.K. (1999). Cicero, Sigonio and Burrows: investigating the
authenticity of the Consolatio. Literary & Linguistic Computing, 14(3). 375-400.

Herdan, G. (1960). Type-Token Mathematics. Mouton: The Hague.

Holmes, D.I. (1994). Authorship attribution. Computers and the Humanities, 28(2), 87-106.

Holmes, D.I. & Forsyth, R.S. (1995). The Federalist revisited: new directions in authorship attribution.
Literary & Linguistic Computing, 10(2), 111-127.

Honoré, A.M. (1979). Some simple measures of richness of vocabulary. ALLC Bulletin, 7(2), 172-177.

Mosteller, F. & Wallace, D.L. (1984). Applied Bayesian and Classical Inference: The Case of the
Federalist Papers. New York: Springer-Verlag.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for
statistical Computing, Vienna, Austria.
http://www.R-project.org/.

Sichel, H.S. (1975). On a distribution law for word frequencies. Journal of the American Statistical
Association, 70, 542-547.

Fiona J. Tweedie and R. Harald Baayen (1998). How variable may a constant be? Measures of lexical
richness in perspective. Computers and the Humanities, 32:323–352.

Upton, G. & Cook, I. (2006). Oxford Dictionary of Statistics, second ed. Oxford: Oxford University
Press.

http://www.ted.com/
https://wit3.fbk.eu/
http://www.r-project.org/

Page 16 of 18

Appendix : Parameter Files

These programs have a number of parameter values that can be set to influence their behaviour. On
the whole it is intended that most of them have sensible values predefined, so they can safely be
ignored by a user. However, some can't be pre-determined and others can usefully be altered for
particular purposes.

There is a sequence in which vocsoft programs determine the values of their adjustable parameters,
which defines a priority ordering, as follows. If present, values given in later steps over-ride those
from previous steps.

(1) Each program has an initial list of built-in default values.
(2) Each program searches for a file called settings.txt in the same directory as the program itself; if
found, this is read and each line scanned for a parameter name (e.g. 'outpath') followed by 1 or
more blank spaces followed by at least 1 nonblank. Anything after the blanks will be treated as a
new value for that parameter (subject to certain minimum and maximum limits imposed on some
numeric values).
(3) Each program will look through the following directories (if they exist) in the following order: the
current working directory, the "parapath" directory of the parent of the current working directory
and the parent directory of the current working directory; e.g. if the working directory is
"c:\vocsoft\p3" the order of search will be as follows
 ['C:\\vocsoft\\p3', 'C:\\vocsoft\\parapath', 'C:\\vocsoft']

stopping when a file with the name of the jobname followed by ".txt" is found. If found, that file will
be read for parameter values in the manner described in (2) above, overwriting any previously
stored values.
(4) Finally, the programs will ask the user for values of a subset of adjustable of parameters, using in
each case as default the value resulting from steps (1)-(3) above. These are presented within square
brackets. If the user just hits Return, the default is accepted. In most cases, this minimizes typing.

However, some parameter values, such as input folders, cannot be guessed in advance, and some
may be unsuitable in a particular experiment. In such cases, it usually saves work to prepare a
parameter file, using a text editor such as Notepad or Notepad++, freely available at
https://notepad-plus-plus.org/download/v6.7.4.html
which should be named with the jobname followed by ".txt".

For example, the parameter file ew.txt on folder vocsoft\parapath contains the following lines.

ew parameter file :

docpaths c:\vocsoft\samples\britfict\novs

docpaths c:\vocsoft\samples\ew\taletext

folders c:\vocsoft\samples\ew\taletext, c:\vocsoft\samples\ew\holdout2

wordonly 1

The first line, beginning with "##", is in effect a comment, since "##" isn't recognized as a parameter
name. The next line specifies where to seek the files from which dox2vox.py will build its vocabulary.
The parameter name 'docpaths' is plural because this parameter can have a list of directory names,
separated by commas; though in the present example, all input files reside in a single folder,
containing the sample of British fiction.

The third line is another comment, but it can easily be edited, by deleting the leading "##", to select
a different source (Edith Wharton's stories) for a comparison experiment.

The line starting with "folders" will be read only by vox2dat.py, as specifying a comma-separated list

https://notepad-plus-plus.org/download/v6.7.4.html

Page 17 of 18

of folders where the texts to be processed reside. You can see that editing this in a text file is likely
to be easier than (repeatedly) entering it interactively. (Likewise with 'docpaths'.)

Finally, the line setting the 'wordonly' parameter to 1 is redundant, unless the settings.txt file has
been corrupted, since this is the value set in that file. It means that only tokens starting with an
alphanumeric character will be counted.

As an introduction, the parameter dump at the end of the file ew_vocs.txt is reproduced below, with
explanations inserted after those parameters which are of most interest to a user.

Parameter settings :

atomize 1

 When set to 1 this means that the internal tokenizer will be used to

split the input texts into tokens (not always lexical words). Only set this

to 0 if your texts have been tokenized already, with whitespace as inter-

token separation.

casefold 1

 This instructs the program to convert all upper-case letters to lower

case. Set this to 0 if you wish to retain upper/lower-case distinction.

dateline Sat Sep 12 15:58:56 2015

doclist <class 'list'> of 36 items.

docpath c:\vocsoft\samples\britfict\novs\

docpaths c:\vocsoft\samples\britfict\novs\

 This is the comma-separated list of folders containing the input

texts to be read. (The singular 'docpath' is an internal value used only

within the program. Equivalent to 'docpaths' with vox2dat.py is 'folders'.)

docs 36

 This isn't settable by a user, but it is useful to know that it

counts the number of documents processed.

dumpname C:\op\ew_vocs.dat

filetail .txt

 If this parameter has a non-empty string value, only files that end

with this string will be read.

id c:\vocsoft\p3\dox2vox.py

jobname ew

 This is the jobname, which is used to link related outputs.

minfreq 3

 This is an internal value: only tokens that occur more than twice

overall will be considered for inclusion in the output vocabulary.

outpath C:\op\

 This specifies the directory path where output files will be written.

pathlist ['c:\\vocsoft\\samples\\britfict\\novs\\']

progname c:\vocsoft\p3\dox2vox.py

progpath c:\vocsoft\p3\

punxtab <class 'dict'> of 25 items.

snipsize 1024

 This specifies the size (number of tokens) in a snippet, for the

purpose of calculating snippet-based scores. Standard snippet size is 115

tokens.

sortcol sniprate

 This defines which column will be used for ordering the output.

Default is 'corprate'. (Table on page 6 describes the options.)

topvocs 144

 This specifies the number of high-frequency tokens to be included in

the vocabulary. The default value is 144.

totsnips 6967

 The program computes the number of snippets and lists this number for

information.

tottoks 7140077

Page 18 of 18

 This is computed by the program. Here we find that the input corpus

contains over 7 million alphanumeric tokens (mostly lexical words, but

probably also including some numbers).

vocdump ew_vocs.dat

 Machine-readable file of output vocabulary. Only file name needed

since it will always be written on the outpath folder.

vocfile ew_vocs.txt

 If not specified, this will be formed from the jobname with

"_vocs.dat" appended, and saved in the outpath folder.

vocsize 60503

 This is the number of distinct vocabulary items, computed by the

program. (Called totvocs by vox2dat.py.)

voutname C:\op\ew_vocs.txt

whereat C:\2015\

 The program shows the working directory from which the program was

executed.

wordonly 1

 When equal to 1 this specifies that only tokens starting with an

alphanumeric character will be considered; if it is 0, all tokens,

including punctuation, will be included in the vocabulary.

It should be noted that the list of input paths to dox2vox.py is 'docpaths', while the list of input
paths to vox2dat.py is called 'folders'. This allows the same parameter file to be used with both
programs, even when the vocabulary generated from one corpus is tested on a different corpus.
Likewise, vocdump is the parameter to be used if its required to give a nonstandard file name to
dox2vox.py for the machine-readable vocabulary output (no path specification needed as it is always
written to the outpath folder), whereas voxfile is the parameter to tell vox2dat.py to read from a
nonstandard vocabulary file (full path specification required). Different names are used to avoid
accidentally overwriting a useful word list.

N.B. At present, if you have more than 1 blank line in a parameter file, the input routine chokes. I do
plan to fix this at some stage; in the mean time, it is quite easy to delete empty lines using a text
editor.

