
Page 1 of 9

EASTIRS : Evolutionary Algorithm Slicing Timeseries Into Related Segments

(User Notes by Richard Forsyth, Sept 2014)

This program identifies sections of sequential data with similar values, thus chopping a series into
segments. It has been written in Python3 and is released under the GNU Public License for general
usage. (Current version is eastirs3.py: the trailing digit in the program name is a version number that
may change if the software is revised.)

Why I Wrote this Software

I originally wrote a C version of this program in 1994. The recent Python edition is, I believe, a slight
improvement. EASTIRS is a special-purpose clustering program. It tries to identify natural break-
points in sequential data, thus partitioning a series into segments, or phases, with similar values.

In essence it performs constrained clustering, but does much the same job more commonly
described by statisticians as change-point analysis. Finding natural subsections of temporally
organized data is a task with many applications in economics, medicine, process control and other
fields. Personally, I am motivated to apply it to stylochronometry, i.e. changes in an author's verbal
habits over time which, if regular, could allow estimating the dates of undated works.

EASTIRS expects to be given 2 input sequences: a time-stamp variable (t) and a response variable (y).
Thus it looks for break-points in a function y = f(t). Actually it isn't restricted to traditional time-
series: the t-variable doesn't have to be spaced at equal intervals and it doesn't even have to be a
time marker. It can be any variable that makes sense as defining an ordering on the y values. (For
practical convenience, if your data has only a single data stream of y values, the program will attach
the positive integers as a default t-variable.)

At present the program deals only with univariate time series, but I hope to develop and release a
multivariate version eventually.

Setting Up

First you need Python3. If you don't have it already, the latest version can be downloaded and
installed from the Python website: www.python.org. This is usually quite straightforward. The only
snag is if you have Python2 and want to keep using it. Then you'll probably have to set up a specific
command to run whichever version you use less frequently.

Next step is to unpack the eastirs.zip file. After unpacking it (into a top-level folder called "eastirs",
unless you want to do quite a lot of editing), you should find the following subfolders.

datasets
op
p3
parapath

The programs are in p3. Sample data sets for testing will be found in datasets. Subfolder op is the
default location for output files and parapath is a convenient place for storing parameter files, which
will be explained later. In Windows, it is most convenient to install eastirs at the top level of the C:\
drive, at least to start with; otherwise you'll have to edit the sample parameter files to make sure
their datfile parameters point to the correct locations.

http://www.python.org/

Page 2 of 9

Data Format

The program expects to read its input values from data files such as can be exported from R (R Core
Team, 2013) or Excel, with a header line giving column names and using the tab character as a
delimiter. Data files can also be created in a text editor such as Notepad++ (http://notepad-plus-
plus.org/), preferably in utf-8 encoding.

The first five lines of the sample datafile lynxdat.dat are listed below to illustrate this format.

year lynx diff

1821 269 0

1822 321 52

1823 585 264

1824 871 286

....

This dataset is a well-studied time series. It records trappings of lynx in Canada from 1821 to 1934. If
you examine it you will see that it consists of repeated boom and bust cycles, presumably as the lynx
population expands to unsustainable levels and then crashes.

The first line names the variables (columns); subsequent lines give values for each of these 3
variables, separated by tabs.

With this example, the obvious t-variable is the year, but there are 2 possible y-variables, lynx (the
number of lynx caught that year) and diff (the difference in lynx trappings from year to year). In
other words, one can look for phases either in the levels themselves or in the changes of level.

Preparing a Parameter File

When you run eastirs3.py it will ask for the name of a parameter file. Below is a listing of parameter
file lynx.txt which comes with the distribution in parapath.

comment applying eastirs to canadian lynx trappings data :

jobname lynx

datfile c:\eastirs\datasets\lynxdat.dat

##targvar lynx

##targvar diff

##choose 1 of above.

timevar year

varmode vc

ntrials 65536

A parameter file is just a plain text file with one item per line. Each line should begin with the
parameter name, then 1 or more blank spaces, then the parameter value. The following table
interprets the above parameter file, line by line.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

jobname eastirs This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a group.

datfile [None] This should be the full file specification of a file where the input
data is stored (in tab-delimited form with a header line naming the

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

Page 3 of 9

columns).

timevar [None] This gives the column name of the variable to be used as the time-
stamp that defines the sequence of the y-values.

targvar [None] This gives the name of the column in the data file that contains the
target variable, i.e. the values of the series itself.

varmode vc This selects which 'fitness function' (see below) is to be used.
Several functions have been implemented but at present I don't
recommend any except "vc", which is the default value.

ntrials 49152 EASTIRS uses an evolutionary algorithm to optimize the serial
subdivision of the data, according to the fitness function selected
by varmode. This parameter specifies how many evolutionary trials
to make, i.e. how many gene-strings will be created during the
optimization process.

In the example above, the lines beginning "##targvar" are comments. To activate either choice of
target (y) variable you could simply delete the "##" at the start of one of these lines, although this
isn't strictly necessary, since the program will ask for a target variable if none is specified in the
parameter file. (Likewise with time-stamp variable.)

Running EASTIRS

When you run eastirs3.py it will ask for a parameter file. If this file is in the same directory as the
program or in the parapath subfolder you won't have to give the full path specification, just its name
(.txt extension will be presumed if no extension is given).

You should see on screen something like the listing below, which comes from a run using the
spots101.txt parameter file. This runs the program on another of the supplied sample sets, mean
daily sunspot numbers from 1913 to 2013 inclusive.

c:\myfolder>python c:\eastirs\p3\eastirs3.py

C:\eastirs\p3\eastirs3.py 3.3 Fri Sep 5 16:13:23 2014

command-line args. = 1

prepath : C:\eastirs\p3

working folder: C:\myfolder

script usage: python C:\eastirs\p3\eastirs3.py <parafile>

please give parameter file name : c:\eastirs\parapath\spots101

Paths to search for parameter file :

['C:\\\\parapath', 'C:\\myfolder', '..', '.', 'C:\\Users\\Richard\\parapath',

'C:\\Users\\Richard']

c:\eastirs\parapath spots101

trying to open : c:\eastirs\parapath\spots101.txt

c:\eastirs\parapath\spots101.txt opened for reading.

102 2

data rows = 101

data cols = 2

['midyear', 'spotnum']

Usable variables :

0 midyear

1 spotnum

Time-stamp chosen is column 0 midyear

midyear

[1913.5, 1914.5, 1915.5, 1916.5, 1917.5, 1918.5, 1919.5, 1920.5, 1921.5, 1922.5]

....

[2004.5, 2005.5, 2006.5, 2007.5, 2008.5, 2009.5, 2010.5, 2011.5, 2012.5, 2013.5]

time-series y-variable :

1 spotnum

basic stats of spotnum :

Page 4 of 9

id 0

mean 63.001

std1 47.8434

std2 48.082

var1 2288.99

var2 2311.8799

[some lines omitted here to save space]

C:\eastirs\p3\eastirs3.py done on Fri Sep 5 16:15:08 2014

after 78.484 seconds.

The only user input required here has been marked in bold face, i.e. the program launch command
and the name of the parameter file, spots101, which is found in folder c:\eastirs\parapath\ with .txt
extension (both defaults).

Interpreting the output

The listing below shows output derived from another dataset supplied with the distribution,
aircraft.dat. This contains 103 examples of military aircraft used in World War II. (More details are
given in aircraft.txt in the datasets subfolder). This is not a temporal sequencing problem; rather, in
this case, the program is examining the relationship between the variable tip2tail (length of the
aircraft in metres) and its wingspan (also in metres). Longer aircraft tend to have greater wingspans:
the program is in effect looking for change-points in this relationship.

C:\eastirs\p3\eastirs3.py

Fri Sep 5 15:52:05 2014

Source file name : c:\eastirs\datasets\aircraft.dat

Sequence variable : tip2tail

Response variable : wingspan

wingspan mean = 16.6274757

wingspan variance = 50.7165588

Fitness mode : vc

Best score = 0.8552925

Best partition :

Rank Case Gene Group tip2tail wingspan

 1 43 1 1 5.6900 9.3000

 2 54 0 1 6.1300 9.1800

 3 53 0 1 6.3000 10.0000

 4 46 0 1 7.5500 11.4800

 5 1 0 1 7.7800 11.0600

 6 8 0 1 7.7900 10.9700

 7 12 0 1 7.9500 11.0000

 8 82 0 1 8.0300 10.6700

 9 51 0 1 8.1500 10.3000

 10 3 0 1 8.1600 10.6200

 11 10 0 1 8.2000 10.5800

 12 5 0 1 8.2100 11.0100

 13 7 0 1 8.2500 9.7000

 14 37 0 1 8.3000 10.5000

 15 67 0 1 8.3600 9.8300

 16 49 0 1 8.4600 9.8000

 17 57 0 1 8.5000 9.2100

 18 26 0 1 8.7500 9.5000

 19 2 0 1 8.7600 10.2100

 20 91 0 1 8.7600 11.5800

 21 31 0 1 8.8400 10.4900

 22 11 0 1 8.8500 10.5800

 23 15 0 1 8.8800 12.0000

 24 50 0 1 8.9000 9.8000

 25 25 0 1 8.9200 10.8300

Page 5 of 9

 26 35 0 1 9.0000 7.2000

 27 41 0 1 9.0400 9.9200

 28 18 0 1 9.0600 12.0000

 29 17 0 1 9.1600 12.0000

 30 79 0 1 9.1900 10.3700

 31 85 0 1 9.5100 11.3900

 32 76 0 1 9.5700 11.2300

 33 71 0 1 9.5800 12.1900

 34 19 0 1 9.7000 10.8000

 35 72 0 1 9.7300 12.6700

 36 100 0 1 9.8200 11.3000

 37 27 0 1 9.9200 11.2400

 38 77 0 1 9.9600 11.2300

 39 90 0 1 10.0700 12.6600

 40 103 0 1 10.1700 12.4700

 41 14 0 1 10.2000 14.3650

 42 32 0 1 10.2000 10.4900

 43 28 0 1 10.2200 11.5000

 44 92 1 2 10.2400 13.0600

[.... 43 lines omitted to save space]

 88 6 0 4 18.4000 24.8000

 89 30 0 4 18.5000 19.0000

 90 38 1 5 18.9000 29.2500

 91 89 0 5 19.4400 29.1300

 92 84 0 5 19.4700 31.7000

 93 21 0 5 19.6300 24.8900

 94 83 0 5 20.4700 33.5300

 95 59 0 5 21.1500 31.0900

 96 78 0 5 21.3000 25.0600

 97 70 0 5 21.3600 31.7500

 98 58 0 5 21.5000 25.6000

 99 80 0 5 22.8000 31.6200

 100 33 0 5 23.4600 30.8550

 101 74 0 5 26.0300 34.3800

 102 75 0 5 26.5900 30.2000

 103 81 0 5 30.1800 43.0500

Segment statistics :

Segment 1 at 5.6900 n = 43 :

median = 10.8000 mean = 10.8192 variance = 1.4387

Segment 2 at 10.2400 n = 14 :

median = 14.2350 mean = 14.2721 variance = 2.0334

Segment 3 at 12.1900 n = 12 :

median = 16.5100 mean = 16.6350 variance = 3.0975

Segment 4 at 13.5100 n = 20 :

median = 20.3650 mean = 20.7935 variance = 3.4605

Segment 5 at 18.9000 n = 14 :

median = 30.9725 mean = 30.8646 variance = 21.0163

Summed subgroup variance = 31.0463918

The listing begins by recording information about the run's settings, including the 2 variables chosen
for analysis as time-stamp and response. (There are 16 variables in this dataset.) The main body of
the listing (abbreviated by omitting 43 rows in the middle) gives details of the best segmentation
found. This is ordered by the t-variable values and gives the corresponding value of the y-variable for
each t-value. It also shows the genestring that defines the resulting segmentation and the group
(numbered from 1) to which each data pair belongs. The listing concludes by giving some summary
statistics of each grouping. (See Upton & Cook (2006) if uncertain about statistical terminology.)

Page 6 of 9

In this example, the program has decided that there are five subgroups, from very small aircraft (43
of them, mostly fighters) to very large (14 of them, 13 being heavy bombers).

An analyst would doubtless want to explore further how these groups differ, e.g. by seeing if the x-y
gradient in the first group differs from that in the last group. To enable such further analyses, the
program produces 2 output files: a list file (indicated by a name ending in "_list.txt" unless specified
otherwise), and a dump file (indicated by a name ending in "_dump.dat" unless specified otherwise).
The list file is what has been shown above. The dump file is just the input data with an extra column
appended that contains the numeric segment label for each case, in tab-delimited format with a
header line. This can be read into Excel or R for further processing. The graph below is an example of
the sort of post-processing that can be done (in R for this example) with a dump file.

This graph is a boxplot generated from the aircraft.dat data, with the groupings derived from
EASTIRS appended (i.e. the "_dump.dat" file read back into R). It shows the distributions of payload
(laden less unladen weight in kilograms) in each subgroup. Payload was not part of the grouping
process, which was based on fuselage length and wingspan; it is derived from the difference of 2
other variables. Yet only 2 of these five derived groupings overlap in their middle 50% range on
payload (groups 3 and 4). Thus the groupings based on one pair of variables are predictive in terms
of a different pair of variables. Of course we know that longer aeroplanes with greater wing spans
can normally carry heavier payloads, but that is why this is a test dataset. In general, this kind of
structural relationship will be unknown, so the fact that the partitioning process reveals it can be
seen as a sign that the process has value in data exploration.

How the program works

The problem of constrained clustering is peculiarly well suited to solution by an evolutionary

Page 7 of 9

approach, since a clustering can be described by a binary string in which 1 signifies the start of a new
segment at a particular point and 0 indicates the continuation of a segment. Bitstrings of this type
are exactly what evolutionary/genetic algorithms work with most effectively. They can be chopped
up and recombined or mutated very simply to produce fresh candidate solutions, thus searching the
space of all possible segmentations.

The evolutionary optimizer used here can be found in the py3seal.py library, on folder p3. It is a
streamlined version of a technique described in section 4.1 of Forsyth (1996).
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf

To apply evolutionary optimization to this kind of problem, a 'fitness function' must be defined. This
gives a quantitative evaluation of the quality of any given segmentation. I have experimented with
several fitness functions but so far the only one I consider satisfactory is selected by giving "vc" as
the value of the varmode parameter. (This is the default if no varmode parameter is supplied.)

This fitness function (which the program tries to maximize) yields a numerical value which can be
summarized as

1.0 - ((dev1+dev2) / max(1,n-g)) / var2

where var2 is the overall variance of the y-variable; dev1 is the summed squared deviation of each y-
value in each group (segment) from its local mean; dev2 is the sum of the squared deviations of the
arithmetic means of each group from the overall mean of the y-variable; n is the number of data
points in the series, and g is the number of segments in the candidate solution.

The underlying idea is that dev1 quantifies the lack of homogeneity in the groups, while dev2
quantifies the lack of parsimony in the segmentation. Both these are treated as costs, then added
together and divided by a number corresponding to the degrees of freedom of the partitioning. This
result is then scaled by the overall variance and subtracted from 1.0 since the evolutionary function
is a maximizer.

Acknowledgements

Thank you for reading this far. :-)

References

Forsyth, R.S. (1996). IOGA: an instance-oriented genetic algorithm. In: Voight, H.-M., Ebeling, W.,
Rechenberg, I. & Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature -- PPSN IV. Berlin:
Springer.
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for
statistical Computing, Vienna, Austria.
http://www.R-project.org/.

Upton, G. & Cook, I. (2006). Oxford Dictionary of Statistics, second ed. Oxford: Oxford University
Press.

http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf
http://www.r-project.org/

Page 8 of 9

Appendix 1 : Parameter Files

Parameters used by eastirs3.py are described below. Normally only the first five in this table need to
be specified by a user, though for long sequences you might want to increase ntrials.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

jobname eastirs This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a group.

datfile [None] This should be the full file specification of a file that indicates where
the input data is stored (in tab-delimited form with a header line
naming the columns).

timevar [None] This gives the column name of the variable to be used as the time-
stamp that defines the sequence of the y-values.

targvar [None] This gives the name of the column in the data file that contains the
target variable, i.e. the values of the series itself.

outpath .\op\ Directory to receive output files. By default this is the op subfolder
of the parent directory of the program.

varmode vc This selects which 'fitness function' (see below) is to be used.
Several functions have been implemented but at present I don't
recommend any except "vc", which is the default value.

ntrials 49152 EASTIRS uses an evolutionary algorithm to optimize the subdivision
of the data, according to the fitness function selected by varmode.
This parameter specifies how many evolutionary trials to make, i.e.
how many gene-strings will be created during the optimization
process. [*]

skipvars [None] A list of names of variables to be ignored, separated by commas.
Won't really be needed until/unless the program becomes
multivariate.

listfile [None] File for human-readable output. If none is specified, the file will
have the jobname followed by "_list.txt".

dumpfile [None] File to receive extended input data with column appended (called
seg_ment) giving the subgroup number of each case, in tab-
delimited form suitable to read into R with the read.delim()
function for post-processing. If none is given, the file will have the
jobname followed by "_dump.dat".

outfile eastirs.txt File that will receive parameter setting information, for reference.

[*] With modest-sized series, up to about 200 data points, EASTIRS is surprisingly effective. However,
the search space expands exponentially as 2 to the power of the number of data points, so theory as
well as practical experience suggests that with sequences of thousands of data points it is unlikely to
converge on a near-optimal solution in a reasonable time.

N.B. At present, if you have more than 1 blank lines in a parameter file, the input routine chokes. I
do plan to fix this at some stage; in the mean time, it is quite easy to delete empty lines using a text
editor.

Page 9 of 9

Appendix 2 : Sample Datafiles

These are provided in the datasets subfolder.

aircraft.dat
This dataset contains information (16 columns) concerning 103 makes of military aircraft used in
World War II. For further details, see aircraft.txt in the same subfolder.

lynxdat.dat
This is the classic Canadian lynx time series, as obtained from the lynx dataset provided with the R
package.
http://www.R-project.org/.

michuron.dat
This data records the annual mean level of Lake Huron (which is the same as Lake Michigan) over the
years 1918 to 2013, obtained from the U.S. National Oceanic and Atmospheric Administration
website.
http://www.glerl.noaa.gov/data/now/wlevels/levels.html

spots101.dat
This data series records the mean daily sunspot numbers observed during the period 1913 to 2013
inclusive. Original source: WDC-SILSO, Royal Observatory of Belgium, Brussels.
http://www.sidc.be/silso/datafiles

http://www.r-project.org/
http://www.glerl.noaa.gov/data/now/wlevels/levels.html
http://www.sidc.be/silso/datafiles

