
Page 1 of 15

CUES : Clustering Using Evolutionary Search
(User Notes by Richard Forsyth, February 2015)

This program uses an evolutionary (Darwinian) optimization technique to perform clustering, i.e. it
identifies within a dataset groups of items which in some sense belong together. An important point
about CUES is that it decides on the number of groups as part of the optimization process without
having to be given the number to find as input -- unlike many well-established clustering algorithms.
It has been written in Python3 and is released under the GNU Public License for general usage.

Why I Wrote this Software
I have used clustering software over many years and during that time have tried many different
clustering programs; for instance, those provided as standard within SPSS and R. However, I have
never been entirely happy with any of the standard methods for choosing the number of groups. As
Everitt has said:

"In many applications researchers will want to select the partition with the 'best' number of
groups for a data set ... A number of indices have been suggested for this purpose but it
remains a difficult problem." (Everitt, 1993 : 89).

It is still an unresolved problem more than two decades later.

Recently, I wrote EASTIRS, a special-purpose clustering program for serial data which tries to identify
natural break-points in sequential data sets, thus partitioning a series into segments, or phases, with
similar values. This gave me the opportunity to work on this problem within an optimization
framework. From single-dimensional clustering it was natural to move on to more general clustering,
exploring quality indices that would balance the number of groups with the cohesiveness of the
clusters. CUES is the result.

Setting Up
First you need Python3. If you don't have it already, the latest version can be downloaded and
installed from the Python website: www.python.org. This is usually quite straightforward. The only
snag is if you have Python2 and want to keep using it. Then you'll probably have to set up a specific
command to run whichever version you use less frequently.

Next step is to unpack the cues.zip file. After unpacking it (into a top-level folder called "cues",
unless you want to do lots of editing), you should find the following subfolders.

datasets
op
p3
parapath

The programs are in p3. Sample data sets for testing will be found in subfolder datasets. Subfolder
op is the default location for output files and parapath is a convenient place for storing parameter
files, which will be explained later. In Windows, it is most convenient to install cues at the top level
of the C:\ drive, at least to start with; otherwise you'll have to edit the sample parameter files to
make sure their datfile parameters point to the correct locations.

Data Format
The program expects to read its input values from data files such as can be exported from R (R Core
Team, 2013) or Excel, with a header line giving column names, using the tab character as a delimiter.
Data files can also be created in a text editor such as Notepad++ (http://notepad-plus-plus.org/),

http://www.python.org/
http://notepad-plus-plus.org/

Page 2 of 15

preferably in utf-8 encoding.

The first four and last four lines of the sample datafile iris.dat are listed below to illustrate this
format.

typename sl sw pl pw

setosa 5.1 3.5 1.4 0.2

setosa 4.9 3 1.4 0.2

setosa 4.7 3.2 1.3 0.2

....

virgin 6.3 2.5 5 1.9

virgin 6.5 3 5.2 2

virgin 6.2 3.4 5.4 2.3

virgin 5.9 3 5.1 1.8

This dataset is a well-studied collection of 150 cases known as "Fisher's Iris Data". It was originally
collected by Edgar Anderson who gathered the data to study the morphological variation of Iris
flowers of three related species. Two of the three species were collected in the Gaspé peninsula in
Quebec (Anderson, 1935). The dataset consists of 50 samples from each of three species of Iris (Iris
setosa, Iris virginica and Iris versicolor). Four features are measured from each sample: the length
and the width of the sepals and petals, in centimetres. In the context of cluster analysis the points at
issue are (1) whether the data naturally falls into 3 groups and (2) if so whether those groups
reproduce the assigned species labels.

This iris dataset is an example of a rectangular 'flat file' with instances as rows and attributes as
columns, a format used by many machine-learning and statistical packages. When CUES reads a
rectangular file of this type, one of its first actions is to compute from it a distance matrix which will
then be used to guide the clustering process.

CUES can also deal with an alternative input format: it is possible to give it a dissimilarity or distance
matrix directly. This gives a user the chance to employ a special-purpose distance or dissimilarity
measure which may suit the particular problem concerned. Such a data matrix should also be
presented to CUES as a tab-delimited file, with case labels on the initial line and the same number of
data rows as columns. The main diagonal, i.e. the dissimilarity score between each case and itself,
should contain only zeroes. This is how CUES recognizes that it has been given a
dissimilarity/distance matrix.

The first five lines of the file eurodist.dat, provided as an example in the datasets subfolder, are
reproduced below as illustration.

Amsterdam Athens Barcelona Brussels Calais Cherbourg Cologne

 Copenhagen Geneva Gibraltar Hamburg Hook of Holland Lisbon

 Lyons Madrid Marseilles Milan Munich Paris Rome Stockholm Vienna

 Warsaw

0 2821 1531 202 362 789 259 788 982 2429 465 77

 2232 925 1769 1233 1074 824 502 1651 1435 1147 1188

2821 0 3313 2963 3175 3339 2762 3276 2610 4485 2977 3030

 4532 2753 3949 2865 2282 2179 3000 817 3927 1991 2348

1531 3313 0 1318 1326 1294 1498 2218 803 1172 2018 1490

 1305 645 636 521 1014 1365 1033 1460 2868 1802 2347

202 2963 1318 0 204 583 206 966 677 2256 597 172

 2084 690 1558 1011 925 747 285 1511 1616 1175 1300

....

This dataset gives the distances by road, in kilometres, between a selection of 23 towns and cities in
Europe.

Page 3 of 15

A small file containing an R function called distout() is provided in the main CUES folder. This will
take a distance matrix as computed by the R function dist() and print it in the format suitable to be
read into CUES. The reason this may be needed is that R only holds by default the upper diagonal
entries of a distance matrix whereas cues.py expects a full N-by-N matrix, where N is the number of
cases. And the reason CUES does that is to allow processing of asymmetric dissimilarity matrices
where the dissimilarity between item i and item j isn't necessarily the same as the dissimilarity
between item j and item i -- as with road distances, airline travel times and so forth. (Of course, since
distout() is intended to print the results of using R's dist() calculations, its output will in fact be
symmetrical. But users may have their own ways of generating asymmetric dissimilarity matrices,
appropriate to certain problems.)

Preparing a Parameter File
When you run cues.py it will ask for the name of a parameter file. Below is a listing of parameter file
iris.txt which comes with the distribution in parapath.

comment cues testing on iris data :

jobname iris

ntrials 131072

optimode 1

scaling 2

distmode eu

datfile c:\cues\datasets\iris.dat

skipvars typename,sw

A parameter file is just a plain text file with one item per line. Each line should begin with the
parameter name, then 1 or more blank spaces, then the parameter value. The following table
interprets the above parameter file, line by line.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

jobname cues This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a group.

ntrials 131072 CUES uses an evolutionary algorithm to optimize the subdivision of
the data, according to the fitness function selected by optimode.
This parameter specifies how many evolutionary trials to make, i.e.
the total number of gene-strings that will be created during the
optimization process.

optimode 1 This selects which 'fitness function' is to be used. Three functions
have been implemented (see below). Number 1 is the fastest and
the mode that I would recommend, at least initially, as discussed
below.

scaling 1 There are 3 scaling modes, 0 to 2: 0 indicates no scaling, i.e. using
the data just as input; 1 requests scaling each column to give a
value from 0 to 1 as a proportion of the range between the
minimum and maximum values in that column; 2 causes each value
to be standardized by subtracting the mean and dividing by the
standard deviation of the column concerned. Note that scaling is
not applied when distances matrices are input directly, only when
the input is a 'normal' rectangular file.

distmode city This tells the system which distance mode to use. Any string other

Page 4 of 15

than "city" will cause Euclidean distances to be computed;
otherwise city-block or 'Manhattan' distances will be calculated --
the default. Note that this parameter has no effect when an input
dissimilarity/distance matrix is given directly as input.

datfile [None] This should be the full file specification of a file where the input
data is stored (in tab-delimited form with a header line naming the
columns).

skipvars [None] This should be a line of variable names separated by commas,
identifying columns which are not to be used in the distance
calculations. Note that at present only numeric columns are
considered by CUES, so it isn't necessary to include string variables
in this list. (Though that is done in the example above it will make
no difference.) This parameter should not be used when a distance
matrix is input directly to the program.

Running CUES
When you run cues.py it will ask for a parameter file. If this file is in the same directory as the
program or in its parapath subfolder you won't have to give the full path specification, just its name
(.txt extension will be presumed if no extension is given).

You should see on screen something like the listing below, which comes from a run using the iris.txt
parameter file discussed in the previous section. This runs the program on Fisher's Iris data,
excluding variable sw (sepal width) which is highly correlated with sepal length and has the weakest
association with the species category of the four morphological features. (If you regard that as
cheating, you can try running cues.py with sw included.)

c:\datwork>python c:\cues\p3\cues.py

C:\cues\p3\cues.py 1.7 Fri Jan 30 14:20:04 2015

command-line args. = 1

prepath : C:\cues\p3

working folder: C:\datwork

script usage: python C:\cues\p3\cues.py <parafile>

please give parameter file name : c:\cues\parapath\iris

Paths to search for parameter file :

['C:\\datwork\\parapath', 'C:\\datwork', '..', '.', 'C:\\Users\\Richard\\parapath',

'C:\\Users\\Richard']

 iris

trying to open : C:\cues\parapath\iris.txt

C:\cues\parapath\iris.txt opened for reading.

151 5

data rows = 150

data cols = 5

column names :

['typename', 'sl', 'sw', 'pl', 'pw']

variables to be used :

1 sl

id 0

mean 5.8433

std1 0.8253

std2 0.8281

var1 0.6811

var2 0.6857

xmax 7.9

xmin 4.3

xr 3.6

3 pl

id 0

mean 3.758

Page 5 of 15

std1 1.7594

std2 1.7653

var1 3.0955

var2 3.1163

xmax 6.9

xmin 1

xr 5.9

4 pw

id 0

mean 1.1993

std1 0.7597

std2 0.7622

var1 0.5771

var2 0.581

xmax 2.5

xmin 0.1

xr 2.4

11175 distances.

number of pals = 12

mean number of comrades = 32.0267

150 18

cycles,subsize = 5 61

loop 1 26214 trials

SEAL incr 3

234 0.05633 !

6553 0.31258 !

13107 0.75158 !

19661 0.76228 !

26214 0.7698 !

26214 trials made.

0.7697972

loop 1 local score = 0.7697972

5 groups.

loop 1 global score = 0.8396219

DDDCDDCDCDDDDCDDDDDDDDCDDDDDDCDDDDDDDDCDDCCDDDDCDDBBBABABABAABABABAABABBBBBBBBBAAAA

BABBBAAABAAAAABAAEBEBEEAEEEEEEBBEEEEBEBEBEEBBEEEEEBBEEEBEEEBEEEEEEB

loop 2 26214 trials

SEAL incr 3

234 0.05824 !

6553 0.27017 !

13107 0.6788 !

19661 0.80612 !

26214 0.82066 !

26214 trials made.

0.8206597

loop 2 local score = 0.8206597

4 groups.

loop 2 global score = 0.8961262

DDBBBCBCBCBCCBCBCBCCBCBBBBBBBBBCCCC

BCBBBCCCBCCCCCBCCABABAACAAABBABBABAABABABAABBAAAAABBAABBAAABAAABBBB

loop 3 26214 trials

SEAL incr 3

234 0.03776 !

6553 0.43739 !

13107 0.73381 !

19661 0.77356 !

26214 0.77356 !

26214 trials made.

0.7735582

loop 3 local score = 0.7735582

5 groups.

loop 3 global score = 0.8244502

loop 4 26214 trials

SEAL incr 3

234 0.0455 !

6553 0.50536 !

Page 6 of 15

13107 0.81089 !

19661 0.83985 !

26214 0.86327 !

26214 trials made.

0.8632674

loop 4 local score = 0.8632674

3 groups.

loop 4 global score = 0.9063978

AABBBBBBBABBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBABBBBABCBCBCCBCCCBBCBBCBCCBCBCBCCBBCCCCBBBCBBBCCCBCCCBBBB

loop 5 26216 trials

SEAL incr 3

234 0.04717 !

6554 0.353 !

13108 0.82305 !

19662 0.86808 !

26216 0.86808 !

26216 trials made.

0.8680804

loop 5 local score = 0.8680804

4 groups.

loop 5 global score = 0.8543987

3 groups.

190.258 secs elapsed.

150

post-tidying loop 1 begins with best score 0.9063978

post-tidying loop 1 ends with best score 0.9279532

92

post-tidying loop 2 begins with best score 0.9279532

post-tidying loop 2 ends with best score 0.9313336

56

post-tidying loop 3 begins with best score 0.9313336

post-tidying loop 3 ends with best score 0.9313336

3 clusters.

8 changes made in post-tidying.

results dumped on C:\op\iris_dump.dat

C:\cues\p3\cues.py done on Fri Jan 30 14:23:19 2015

after 192.083 seconds.

The only user input required here has been marked in bold face, i.e. the program launch command
and the name of the parameter file, iris.txt, which is found in folder c:\cues\parapath\ with .txt
extension. The main output file (iris_dump.dat) will be exactly the same as the input data except
that an extra column, with the name "clus_ter" in the header line, will have been added. This column
contains the integer cluster labels assigned by cues.py to each row. Such output files can be read
into R for further analysis by an R command such as

cuesout = read.delim("c:\\cues\\op\\iris_dump",fileEncoding="utf-8")

where the precise file specification will be what cues.py displays just before it ends.

Interpreting the output
The listing above begins by displaying information about the run's settings, including basic statistics
of the three variables chosen for analysis, sl, pl & pw. (See Upton & Cook (2006) if uncertain about
statistical terminology.) It confirms that there are five columns and 150 rows in this dataset.

The main body of the listing shows the progress of the clustering. The program always does more
than one cycle of the evolutionary optimization process, the exact number of cycles is the integer
part of the natural logarithm of the number or rows of data. In this case there were 5 evolutionary
cycles, each applied to a random subset of the whole dataset. The parameter file requested 131072
evolutionary trials: these are divided into four runs of 26214 trials and one of 26216 trials. This
approach, of spreading computational resources over a few shorter runs rather than a single long

Page 7 of 15

run, is a heuristic that has proved effective in a large number of stochastic optimization applications.

During each cycle the program prints the best fitness score achieved during that cycle at five points:
firstly near the start of the procedure, then when a quarter, a half, and three quarters of the cycles
have been used, and then the final score. The difference between a "local score" and "global score"
after each loop is the difference between the fitness score on the selected subset and the fitness
score once all instances in the dataset have been allocated. If the global score of the latest cycle is
the best yet, a string representation of the best clustering is also displayed, with letters as cluster
labels, in the same sequence as the input data cases.

Towards the end of the listing are the results of one or more "post-tidying loops". These show that
cues.py is in fact a hybrid method. The main processing is done by an evolutionary algorithm, but
experience shows that this often leaves 1 or 2 items in a cluster from which they appear distant to
the human eye (at least in 2-dimensional examples). Thus I have appended a greedy hill-climbing
algorithm which usually finds a way of making a few reallocations that improve the overall fitness
score.

(If you choose a small value for the ntrials parameter, you can force the post-tidying routine to do
most of the work. Then you will find that it is rather slow and not very efficient. However, it is pretty
effective at reassigning a few obvious misplacements in a nearly correct clustering.)

As the above will have made clear, CUES is a stochastic process; thus it does not guarantee an
optimal solution. It is good at 'satisficing', however, which means that it can normally be relied upon
to arrive at a near-optimal clustering. In the present example, it has found a solution with 3 groups;
but those groups aren't identical with the species categories. A tabulation of the species categories
against the CUES clusters found in the run above is given below.

CUES group: 0 1 2

Setosa 50 0 0

Versicolor 0 50 0

Virginica 0 19 31

All fifty Iris Setosa cases have been put into a coherent group, and 31 of the Iris Virginica cases are in
a group of their own; but 19 of the Virginica instances fall into a group which contains all fifty of the
Iris Versicolor instances. In other words, some Virginica plants seem more like Versicolor than their
own species.

Below is a 2D scatter plot which illustrates this by showing the results in the space of 2 of the
features, pw & sl. Here the colours distinguish the three CUES groupings while the plot symbols
distinguish the pre-existing categories. It will be seen that Versicolor and Virginica examples do
overlap in this feature space. A botanist might respond to this result by re-visiting the species
assignment, or considering whether indeed Iris Versicolor and Virginica are distinct species.

Page 8 of 15

How the program works
The problem of clustering is relatively well suited to solution by an evolutionary approach, since a
clustering can be described by a string of integers, one for each data case, with each integer
indicating the class to which that particular case belongs. Strings of this type are exactly what
evolutionary/genetic algorithms work with most effectively. They can be chopped up and
recombined or mutated very simply to produce fresh candidate solutions, thus searching the space
of all possible clusterings.

The evolutionary optimizer used here can be found in the py3seal.py library, on folder p3. It is a
streamlined version of a technique described in section 4.1 of Forsyth (1996).
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf

To apply evolutionary optimization to this kind of problem, a 'fitness function' must be defined. This
gives a quantitative evaluation of the quality of any given clustering. The current version of CUES
implements three different fitness functions, one of which is selected by giving a number, 1, 2 or 3,
as value of the optimode parameter in the parameter file. If none is give, mode 1 will be used.

Optimode 1 is an original invention. The algorithm has a sociological or tribal flavour: it tries to
ensure that as many cases as possible are grouped with other cases with which they have affinities
(as defined by the dissimilarity/distance matrix) and apart from cases from which they are most
different. It is also the fastest of the three modes and currently the default setting. The idea behind
it is to create, for each item in the dataset, four sets of related items, namely 'pals', 'foes',
'comrades' and 'outcasts'. Pals and foes are of fixed size, nf, where nf is the rounded square root of
the number of rows in the dataset. For each case, its pals and foes are simply the nf nearest other

http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf

Page 9 of 15

cases to it and furthest from it, respectively. For each item its comrades are those items closer to it
than the 25th percentile (lower quartile) of all the inter-item distances in the whole dataset. For
each case its outcasts are simply those items whose distances from it are greater than the median
(50% level) of all inter-item distances in the data. Thus the sizes of sets comrades and outcasts vary
between cases, dependent on the density of the region around each case.

Having established these four sets for each case in the data, the quality of a clustering is computed
as follows. Each case contributes (A + B - C) to an overall total
where
A = (pg - fg) / nf
B = c / co
C = o / oc
and where
pg is the number of its pals in the current case's cluster;
fg is the number of its foes in the current case's cluster;
nf is the size of the sets pals & foes, as above;
c is the number of its comrades in the current case's cluster;
co is the number of comrades of the current case;
o is the number of its outcasts in the current case's cluster;
oc is the number of outcasts of the current case.

The contributions of every case are summed and divided by twice the number of cases under
consideration to give an overall fitness score which will be between -1 and 1. This may sound long-
winded, but it is faster to compute, in general, than the other two fitness functions.

Optimode 2 was intended as a robust version of optimode 3, below, but it does not perform very
satisfactorily in practice, so I may well remove it at some stage. Available at user's risk for
experimentation.

Optimode 3 is conceptually simple. It computes the mean value of all within-cluster inter-item
distances and the mean value of all between-cluster inter-item distances then subtracts the former
from the latter and divides by an estimate of the maximum expected difference. It increases with
the proximity of cluster members to each other and with their distances to members of other
clusters. It also lies in the range -1 to +1, though rarely getting close to those extremes.

Notice that there is no explicit penalty in any of these formulas for the actual number of clusters.
Nevertheless it is clear that, unless all inter-item distances are equal, the extremes of putting every
item in the same cluster or putting every item in a different cluster cannot achieve a maximum
score. In practice, optimode 1 tends to find its highest value near the natural logarithm of the
number of data cases, and optimode 3 tends to find its highest value near the square root of the
number of data cases.

Example results
Two further illustrations follow. The first is the classic Ruspini dataset (Ruspini, 1970) provided as
ruspini.dat in the datasets subfolder. This has just 2 dimensions so is suited to plotting. With
optimode 1, cues.py normally finds the 'standard' four-group solution; but with optimode 3, it tends
to converge on a five-group solution, as illustrated here. Arguably, based on visual impression, a 6-
group solution would also make sense. You can judge for yourself by looking at the graph.

Page 10 of 15

Page 11 of 15

The second graph displays a solution found by applying cues.py to the eurodist.dat sample data file
using optimode 1. Here the input is a distance matrix (road distances in kilometres). In order to
display it as a 2D plot, I used R's sammon() multidimensional scaling function, from the MASS library,
on the distances. This produced 2 dimensions which do roughly correspond to north-south and east-
west. The latter happens to be inverted from a geographic point of view, so its negation has been
used as the x-axis. Here the program has found a four-group solution, as indicated by the colours.
There is no definitive right answer, but this looks reasonable to my eyes.

These graphs were obtained by reading the output file from cues.py, including the extra column
headed 'clus_ter', into R and using R's plotting facilities. This is how I imagine users will generally
employ the CUES software -- dumping data from R with write.table(), generating a clustering with
cues.py, then re-reading the data with cluster labels back into R with read.delim() for further
analyses. (I thought of writing the whole thing in R, but Python is faster and handles sets more
neatly. Also I know Python better.)

Acknowledgements

Thank you for reading this far. :-)

References

Anderson, E. (1935). "The irises of the Gaspé Peninsula". Bulletin of the American Iris Society 59: 2–5.
http://en.wikipedia.org/wiki/Iris_flower_data_set

Everitt, B.S. (1993). Cluster Analysis, third edition. London: Arnold.

Forsyth, R.S. (1996). IOGA: an instance-oriented genetic algorithm. In: Voight, H.-M., Ebeling, W.,
Rechenberg, I. & Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature -- PPSN IV. Berlin:
Springer.
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for
statistical Computing, Vienna, Austria.
http://www.R-project.org/.

Ruspini, E.H. (1970). Numerical methods for fuzzy clustering. Information Science, 2, 319–350.

Turchin, P., Peiros, I. & Gell-Mann, M. (2009). Analyzing Genetic Connections between Languages by
Matching Consonant Classes. Cliodynamics, October 2009.
http://cliodynamics.info/PDF/ConsClass.pdf

Upton, G. & Cook, I. (2006). Oxford Dictionary of Statistics, second edition. Oxford: Oxford University
Press.

Wong, M.A. & Lane, T. (1983). A kth nearest neighbour clustering procedure. J. Royal Statistical
Society, B, 45, 362-368.

http://en.wikipedia.org/wiki/Iris_flower_data_set
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf
http://www.r-project.org/
http://cliodynamics.info/PDF/ConsClass.pdf

Page 12 of 15

Appendix 1 : Parameter Files

Parameters used by cues.py are described below.

Parameter Default value Function

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be
used to insert reminders about what the file is meant to do.

datfile [None] This should be the full file specification of a file that indicates where
the input data is stored (in tab-delimited form with a header line
naming the columns).

distmode city This tells the system which distance mode to use. Any string other
than "city" will cause Euclidean distances to be computed;
otherwise city-block or 'Manhattan' distances will be calculated --
the default. Note that this parameter has no effect when an input
matrix is given directly as input.

dumpfile [None] This is the specification of the file where the main output will be
written. Its contents will be the same as the input data (datfile)
except that an additional column (headed 'clus_ter') will be
appended, containing the numeric cluster codes. If none is
specified, this file will have the jobname followed by "_dump.dat".

jobname cues This gives the job a name. Any text string can be the value. It isn't
necessary but it is useful as the jobname will be used as a prefix to
the program's output files, so it can be seen that they form a group.

listfile [None] File mainly for debugging output. If none is specified, the file will
have the jobname followed by "_list.txt".

longtime 3600 If the time elapsed, in seconds, is as long as or longer than this
when the evolutionary phase has finished, only a highly abbreviated
version of the post-tidying process will be performed. If less than
longtime seconds have elapsed when the evolutionary phase
finishes, the full post-tidying procedure will be executed.

ntrials 131072 CUES uses an evolutionary algorithm to optimize the subdivision of
the data, according to the fitness function selected by optimode.
This parameter specifies how many evolutionary trials to make, i.e.
how many gene-strings will be created during the evolutionary
optimization process. [*]

optimode 1 This selects one of three fitness functions to be used (1,2,3).
Optimode 1 is the default. It is also the fastest. Optimode 3 tends to
create a larger number of clusters. These modes are explained
above, in the subsection headed "How the program works".

outfile ..\op\cues.txt File that will receive parameter setting information, for reference.

outpath ..\op\ Directory to receive output files. By default this is the op subfolder
of the parent directory of the program.

scaling 1 There are 3 scaling modes, 0 to 2: 0 indicates no scaling, i.e. using
the data just as input; 1 requests scaling each column to give a
value from 0 to 1 as a proportion of the range between the
minimum and maximum values in that column; 2 causes each value
to be standardized by subtracting the mean and dividing by the
standard deviation of the column concerned. Note that scaling is
not applied when distance matrices are input directly, only when
the input is a 'normal' rectangular file.

skipvars [None] This should be a line of variable names separated by commas,

Page 13 of 15

identifying columns which are not to be used in the distance
calculations. Note that at present only numeric columns are
considered by CUES, so it isn't necessary to include string variables
in this list. This parameter should not be used when a distance
matrix is input directly to the program.

[*] With modest-sized data sets, up to about 256 data points, CUES is surprisingly effective.
However, the search space expands multiplicatively with the number of data points, so theory as
well as practical experience suggests that the system will hit the 'combinatorial wall' somewhere
around a thousand data points.

N.B. At present, if you have more than 1 blank lines in a parameter file, the input routine chokes. I
do plan to fix this at some stage; in the mean time, it is quite easy to delete empty lines using a text
editor.

Page 14 of 15

Appendix 2 : Sample Datafiles

These are provided in the datasets subfolder, so that users can experiment with the system before
using it on their own data sets.

eurodist.dat
This is a distance-matrix file containing road distances in km between a selection of 23 European
towns and cities.

iris.dat
This is a rectangular data file with five columns containing information about three species of iris
flowers (Anderson, 1935). It is commonly known as Fisher's Iris Data since it was studied by Sir
Ronald Fisher in his development of the technique of linear discriminant analysis (LDA).

lingdis1.dat
This is a distance-matrix file derived from an article about relatedness among languages by Turchin
et al. (2009). Their method involved taking 100 meanings in 53 languages (several of them
reconstructed 'proto-languages') and recording the phonetic classes of first 2 consonants of the
(most standard?) word with that meaning. I wrote a little Python program to compute from this
table the number of mismatches between these 100 pairs of consonant classes for each language
pair, thus constructing a dissimilarity matrix, held in the lingdis1.dat file. If you apply cues.py to this
datafile with optimode 1, you will rediscover some of the classic language 'families' proposed by
linguists, such as Altaic, Indo-European and Semitic. With optimode 3 you will rediscover many
subfamilies, such as Germanic, Romance and Slavic. For reference, the original data is also provided
in the file Turchin09CCM.txt, which can also be found online as an Excel file at:
http://cliodynamics.info/data/SuppInfo.xls

page113.dat
This is a 2-dimensional dataset produced by random sampling from 2 different bivariate normal
distributions -- 50 observations from each -- with the same parameter values as described in (Everitt,
1993) and illustrated in figure 6.1 on page 113 of that book. It isn't exactly the same as the data that
gave rise to that figure, but it is a sample of the same size with the same characteristics.

ruspini.dat
This is the classic 2-dimensional dataset used by Ruspini (1970) to test his clustering algorithm which
has become something of a benchmark example in the field of cluster analysis. (Illustrated above.)

wonglane.dat
I produced this dataset of 52 items by measuring as well as I could the x & y coordinates, in
millimetres, of the data points in figure 7.1 on page 129 of (Everitt, 1993). This figure derives from an
article by Wong & Lane (1983), which I haven't read, though I'd be willing to wager a half pint of beer
that at least 100 of the 104 coordinates that I transferred from the page will prove to be within plus
or minus half a millimetre (appropriately scaled) of their correct values. First bet-taker only. ;-)

zoobase.dat
This is a home-brew dataset that I came up with many moons ago, which somehow found its way
into the UCI machine-learning repository. It describes 101 animal species in terms of 16 attributes,
most of them binary. Zoologically speaking it is rather amateurish, but it still serves as an instructive
test case. Further details can be found in file zoobase.txt, in the same subfolder.

http://cliodynamics.info/data/SuppInfo.xls

Page 15 of 15

Four datasets intended for use with EASTIRS have also been included, though they are less relevant
to CUES: see Eastirs User Notes for details.

aircraft.dat
This dataset contains information (16 columns) concerning 103 makes of military aircraft used in
World War II. For further details, see aircraft.txt in the same subfolder.

lynxdat.dat
This is the classic Canadian lynx time series, as obtained from the lynx dataset provided with the R
package. http://www.R-project.org/.

michuron.dat
This data records the annual mean level of Lake Huron (which is the same as Lake Michigan) over the
years 1918 to 2013, obtained from the U.S. National Oceanic and Atmospheric Administration
website. http://www.glerl.noaa.gov/data/now/wlevels/levels.html

spots101.dat
This data series records the mean daily sunspot numbers observed during the period 1913 to 2013
inclusive. Original source: WDC-SILSO, Royal Observatory of Belgium, Brussels.
http://www.sidc.be/silso/datafiles

http://www.r-project.org/
http://www.glerl.noaa.gov/data/now/wlevels/levels.html
http://www.sidc.be/silso/datafiles

