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CUES : Clustering Using Evolutionary Search 
(User Notes by Richard Forsyth, February 2015) 

 
This program uses an evolutionary (Darwinian) optimization technique to perform clustering, i.e. it 
identifies within a dataset groups of items which in some sense belong together. An important point 
about CUES is that it decides on the number of groups as part of the optimization process without 
having to be given the number to find as input -- unlike many well-established clustering algorithms. 
It has been written in Python3 and is released under the GNU Public License for general usage. 
 
Why I Wrote this Software 
I have used clustering software over many years and during that time have tried many different 
clustering programs; for instance, those provided as standard within SPSS and R. However, I have 
never been entirely happy with any of the standard methods for choosing the number of groups. As 
Everitt has said: 

"In many applications researchers will want to select the partition with the 'best' number of 
groups for a data set ... A number of indices have been suggested for this purpose but it 
remains a difficult problem." (Everitt, 1993 : 89). 

 
It is still an unresolved problem more than two decades later. 
 
Recently, I wrote EASTIRS, a special-purpose clustering program for serial data which tries to identify 
natural break-points in sequential data sets, thus partitioning a series into segments, or phases, with 
similar values. This gave me the opportunity to work on this problem within an optimization 
framework. From single-dimensional clustering it was natural to move on to more general clustering, 
exploring quality indices that would balance the number of groups with the cohesiveness of the 
clusters. CUES is the result. 
 
Setting Up 
First you need Python3. If you don't have it already, the latest version can be downloaded and 
installed from the Python website: www.python.org. This is usually quite straightforward. The only 
snag is if you have Python2 and want to keep using it. Then you'll probably have to set up a specific 
command to run whichever version you use less frequently. 
 
Next step is to unpack the cues.zip file. After unpacking it (into a top-level folder called "cues", 
unless you want to do lots of editing), you should find the following subfolders. 
 
datasets 
op 
p3 
parapath 
 
The programs are in p3. Sample data sets for testing will be found in subfolder datasets. Subfolder 
op is the default location for output files and parapath is a convenient place for storing parameter 
files, which will be explained later. In Windows, it is most convenient to install cues at the top level 
of the C:\ drive, at least to start with; otherwise you'll have to edit the sample parameter files to 
make sure their datfile parameters point to the correct locations. 
 
Data Format 
The program expects to read its input values from data files such as can be exported from R (R Core 
Team, 2013) or Excel, with a header line giving column names, using the tab character as a delimiter. 
Data files can also be created in a text editor such as Notepad++ (http://notepad-plus-plus.org/), 

http://www.python.org/
http://notepad-plus-plus.org/
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preferably in utf-8 encoding. 
 
The first four and last four lines of the sample datafile iris.dat are listed below to illustrate this 
format. 
 

typename sl sw pl pw 

setosa 5.1 3.5 1.4 0.2 

setosa 4.9 3 1.4 0.2 

setosa 4.7 3.2 1.3 0.2 

.... 

virgin 6.3 2.5 5 1.9 

virgin 6.5 3 5.2 2 

virgin 6.2 3.4 5.4 2.3 

virgin 5.9 3 5.1 1.8 

 
This dataset is a well-studied collection of 150 cases known as "Fisher's Iris Data". It was originally 
collected by Edgar Anderson who gathered the data to study the morphological variation of Iris 
flowers of three related species. Two of the three species were collected in the Gaspé peninsula in 
Quebec (Anderson, 1935). The dataset consists of 50 samples from each of three species of Iris (Iris 
setosa, Iris virginica and Iris versicolor). Four features are measured from each sample: the length 
and the width of the sepals and petals, in centimetres. In the context of cluster analysis the points at 
issue are (1) whether the data naturally falls into 3 groups and (2) if so whether those groups 
reproduce the assigned species labels. 
 
This iris dataset is an example of a rectangular 'flat file' with instances as rows and attributes as 
columns, a format used by many machine-learning and statistical packages. When CUES reads a 
rectangular file of this type, one of its first actions is to compute from it a distance matrix which will 
then be used to guide the clustering process. 
 
CUES can also deal with an alternative input format: it is possible to give it a dissimilarity or distance 
matrix directly. This gives a user the chance to employ a special-purpose distance or dissimilarity 
measure which may suit the particular problem concerned. Such a data matrix should also be 
presented to CUES as a tab-delimited file, with case labels on the initial line and the same number of 
data rows as columns. The main diagonal, i.e. the dissimilarity score between each case and itself, 
should contain only zeroes. This is how CUES recognizes that it has been given a 
dissimilarity/distance matrix. 
 
The first five lines of the file eurodist.dat, provided as an example in the datasets subfolder, are 
reproduced below as illustration. 
 
Amsterdam Athens Barcelona Brussels Calais Cherbourg Cologne

 Copenhagen Geneva Gibraltar Hamburg Hook of Holland Lisbon

 Lyons Madrid Marseilles Milan Munich Paris Rome Stockholm Vienna

 Warsaw 

0 2821 1531 202 362 789 259 788 982 2429 465 77

 2232 925 1769 1233 1074 824 502 1651 1435 1147 1188 

2821 0 3313 2963 3175 3339 2762 3276 2610 4485 2977 3030

 4532 2753 3949 2865 2282 2179 3000 817 3927 1991 2348 

1531 3313 0 1318 1326 1294 1498 2218 803 1172 2018 1490

 1305 645 636 521 1014 1365 1033 1460 2868 1802 2347 

202 2963 1318 0 204 583 206 966 677 2256 597 172

 2084 690 1558 1011 925 747 285 1511 1616 1175 1300 

.... 

 
This dataset gives the distances by road, in kilometres, between a selection of 23 towns and cities in 
Europe. 
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A small file containing an R function called distout() is provided in the main CUES folder. This will 
take a distance matrix as computed by the R function dist() and print it in the format suitable to be 
read into CUES. The reason this may be needed is that R only holds by default the upper diagonal 
entries of a distance matrix whereas cues.py expects a full N-by-N matrix, where N is the number of 
cases. And the reason CUES does that is to allow processing of asymmetric dissimilarity matrices 
where the dissimilarity between item i and item j isn't necessarily the same as the dissimilarity 
between item j and item i -- as with road distances, airline travel times and so forth. (Of course, since 
distout() is intended to print the results of using R's dist() calculations, its output will in fact be 
symmetrical. But users may have their own ways of generating asymmetric dissimilarity matrices, 
appropriate to certain problems.) 
 
Preparing a Parameter File 
When you run cues.py it will ask for the name of a parameter file. Below is a listing of parameter file 
iris.txt which comes with the distribution in parapath. 
 

comment  cues testing on iris data : 

jobname  iris 

ntrials  131072 

optimode  1 

scaling  2 

distmode  eu 

datfile  c:\cues\datasets\iris.dat 

skipvars  typename,sw  

 
A parameter file is just a plain text file with one item per line. Each line should begin with the 
parameter name, then 1 or more blank spaces, then the parameter value. The following table 
interprets the above parameter file, line by line. 
 

Parameter Default value Function 

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be 
used to insert reminders about what the file is meant to do. 

jobname cues This gives the job a name. Any text string can be the value. It isn't 
necessary but it is useful as the jobname will be used as a prefix to 
the program's output files, so it can be seen that they form a group. 

ntrials 131072 CUES uses an evolutionary algorithm to optimize the subdivision of 
the data, according to the fitness function selected by optimode. 
This parameter specifies how many evolutionary trials to make, i.e. 
the total number of gene-strings that will be created during the 
optimization process. 

optimode 1 This selects which 'fitness function' is to be used. Three functions 
have been implemented (see below). Number 1 is the fastest and 
the mode that I would recommend, at least initially, as discussed 
below. 

scaling 1 There are 3 scaling modes, 0 to 2: 0 indicates no scaling, i.e. using 
the data just as input; 1 requests scaling each column to give a 
value from 0 to 1 as a proportion of the range between the 
minimum and maximum values in that column; 2 causes each value 
to be standardized by subtracting the mean and dividing by the 
standard deviation of the column concerned. Note that scaling is 
not applied when distances matrices are input directly, only when 
the input is a 'normal' rectangular file. 

distmode city This tells the system which distance mode to use. Any string other 
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than "city" will cause Euclidean distances to be computed; 
otherwise city-block or 'Manhattan' distances will be calculated -- 
the default. Note that this parameter has no effect when an input 
dissimilarity/distance matrix is given directly as input. 

datfile [None] This should be the full file specification of a file where the input 
data is stored (in tab-delimited form with a header line naming the 
columns). 

skipvars [None] This should be a line of variable names separated by commas, 
identifying columns which are not to be used in the distance 
calculations. Note that at present only numeric columns are 
considered by CUES, so it isn't necessary to include string variables 
in this list. (Though that is done in the example above it will make 
no difference.) This parameter should not be used when a distance 
matrix is input directly to the program. 

 
Running CUES 
When you run cues.py it will ask for a parameter file. If this file is in the same directory as the 
program or in its parapath subfolder you won't have to give the full path specification, just its name 
(.txt extension will be presumed if no extension is given). 
 
You should see on screen something like the listing below, which comes from a run using the iris.txt 
parameter file discussed in the previous section. This runs the program on Fisher's Iris data, 
excluding variable sw (sepal width) which is highly correlated with sepal length and has the weakest 
association with the species category of the four morphological features. (If you regard that as 
cheating, you can try running cues.py with sw included.) 
 
c:\datwork>python c:\cues\p3\cues.py 

C:\cues\p3\cues.py 1.7 Fri Jan 30 14:20:04 2015 

command-line args. = 1 

prepath : C:\cues\p3 

working folder:  C:\datwork 

script usage:  python C:\cues\p3\cues.py <parafile> 

please give parameter file name : c:\cues\parapath\iris 

Paths to search for parameter file : 

['C:\\datwork\\parapath', 'C:\\datwork', '..', '.', 'C:\\Users\\Richard\\parapath', 

'C:\\Users\\Richard'] 

 iris  

trying to open : C:\cues\parapath\iris.txt 

C:\cues\parapath\iris.txt opened for reading. 

151 5 

data rows = 150 

data cols = 5 

column names : 

['typename', 'sl', 'sw', 'pl', 'pw'] 

 

variables to be used : 

1 sl 

id        0 

mean      5.8433 

std1      0.8253 

std2      0.8281 

var1      0.6811 

var2      0.6857 

xmax      7.9 

xmin      4.3 

xr        3.6 

 

3 pl 

id        0 

mean      3.758 
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std1      1.7594 

std2      1.7653 

var1      3.0955 

var2      3.1163 

xmax      6.9 

xmin      1 

xr        5.9 

 

4 pw 

id        0 

mean      1.1993 

std1      0.7597 

std2      0.7622 

var1      0.5771 

var2      0.581 

xmax      2.5 

xmin      0.1 

xr        2.4 

 

11175 distances. 

number of pals = 12 

mean number of comrades = 32.0267 

150 18 

cycles,subsize = 5 61 

loop 1 26214 trials 

SEAL incr 3 

234 0.05633 ! 

6553 0.31258 ! 

13107 0.75158 ! 

19661 0.76228 ! 

26214 0.7698 ! 

26214 trials made. 

0.7697972 

loop 1 local score = 0.7697972 

5 groups. 

loop 1 global score = 0.8396219 

DDDCDDCDCDDDDCDDDDDDDDCDDDDDDCDDDDDDDDCDDCCDDDDCDDBBBABABABAABABABAABABBBBBBBBBAAAA

BABBBAAABAAAAABAAEBEBEEAEEEEEEBBEEEEBEBEBEEBBEEEEEBBEEEBEEEBEEEEEEB 

loop 2 26214 trials 

SEAL incr 3 

234 0.05824 ! 

6553 0.27017 ! 

13107 0.6788 ! 

19661 0.80612 ! 

26214 0.82066 ! 

26214 trials made. 

0.8206597 

loop 2 local score = 0.8206597 

4 groups. 

loop 2 global score = 0.8961262 

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDBBBCBCBCBCCBCBCBCCBCBBBBBBBBBCCCC

BCBBBCCCBCCCCCBCCABABAACAAABBABBABAABABABAABBAAAAABBAABBAAABAAABBBB 

loop 3 26214 trials 

SEAL incr 3 

234 0.03776 ! 

6553 0.43739 ! 

13107 0.73381 ! 

19661 0.77356 ! 

26214 0.77356 ! 

26214 trials made. 

0.7735582 

loop 3 local score = 0.7735582 

5 groups. 

loop 3 global score = 0.8244502 

loop 4 26214 trials 

SEAL incr 3 

234 0.0455 ! 

6553 0.50536 ! 
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13107 0.81089 ! 

19661 0.83985 ! 

26214 0.86327 ! 

26214 trials made. 

0.8632674 

loop 4 local score = 0.8632674 

3 groups. 

loop 4 global score = 0.9063978 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBABBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBABBBBABCBCBCCBCCCBBCBBCBCCBCBCBCCBBCCCCBBBCBBBCCCBCCCBBBB 

loop 5 26216 trials 

SEAL incr 3 

234 0.04717 ! 

6554 0.353 ! 

13108 0.82305 ! 

19662 0.86808 ! 

26216 0.86808 ! 

26216 trials made. 

0.8680804 

loop 5 local score = 0.8680804 

4 groups. 

loop 5 global score = 0.8543987 

3 groups. 

190.258 secs elapsed. 

150 

post-tidying loop 1 begins with best score 0.9063978 

post-tidying loop 1 ends with best score 0.9279532 

92 

post-tidying loop 2 begins with best score 0.9279532 

post-tidying loop 2 ends with best score 0.9313336 

56 

post-tidying loop 3 begins with best score 0.9313336 

post-tidying loop 3 ends with best score 0.9313336 

3 clusters. 

8 changes made in post-tidying. 

results dumped on  C:\op\iris_dump.dat 

C:\cues\p3\cues.py done on Fri Jan 30 14:23:19 2015 

after 192.083 seconds. 

 
The only user input required here has been marked in bold face, i.e. the program launch command 
and the name of the parameter file, iris.txt, which is found in folder c:\cues\parapath\ with .txt 
extension. The main output file (iris_dump.dat) will be exactly the same as the input data except 
that an extra column, with the name "clus_ter" in the header line, will have been added. This column 
contains the integer cluster labels assigned by cues.py to each row. Such output files can be read 
into R for further analysis by an R command such as 
 
cuesout = read.delim("c:\\cues\\op\\iris_dump",fileEncoding="utf-8") 
 
where the precise file specification will be what cues.py displays just before it ends. 
 
Interpreting the output 
The listing above begins by displaying information about the run's settings, including basic statistics 
of the three variables chosen for analysis, sl, pl & pw. (See Upton & Cook (2006) if uncertain about 
statistical terminology.) It confirms that there are five columns and 150 rows in this dataset. 
 
The main body of the listing shows the progress of the clustering. The program always does more 
than one cycle of the evolutionary optimization process, the exact number of cycles is the integer 
part of the natural logarithm of the number or rows of data. In this case there were 5 evolutionary 
cycles, each applied to a random subset of the whole dataset. The parameter file requested 131072 
evolutionary trials: these are divided into four runs of 26214 trials and one of 26216 trials. This 
approach, of spreading computational resources over a few shorter runs rather than a single long 
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run, is a heuristic that has proved effective in a large number of stochastic optimization applications. 
 
During each cycle the program prints the best fitness score achieved during that cycle at five points: 
firstly near the start of the procedure, then when a quarter, a half, and three quarters of the cycles 
have been used, and then the final score. The difference between a "local score" and "global score" 
after each loop is the difference between the fitness score on the selected subset and the fitness 
score once all instances in the dataset have been allocated. If the global score of the latest cycle is 
the best yet, a string representation of the best clustering is also displayed, with letters as cluster 
labels, in the same sequence as the input data cases. 
 
Towards the end of the listing are the results of one or more "post-tidying loops". These show that 
cues.py is in fact a hybrid method. The main processing is done by an evolutionary algorithm, but 
experience shows that this often leaves 1 or 2 items in a cluster from which they appear distant to 
the human eye (at least in 2-dimensional examples). Thus I have appended a greedy hill-climbing 
algorithm which usually finds a way of making a few reallocations that improve the overall fitness 
score. 
 
(If you choose a small value for the ntrials parameter, you can force the post-tidying routine to do 
most of the work. Then you will find that it is rather slow and not very efficient. However, it is pretty 
effective at reassigning a few obvious misplacements in a nearly correct clustering.) 
 
As the above will have made clear, CUES is a stochastic process; thus it does not guarantee an 
optimal solution. It is good at 'satisficing', however, which means that it can normally be relied upon 
to arrive at a near-optimal clustering. In the present example, it has found a solution with 3 groups; 
but those groups aren't identical with the species categories. A tabulation of the species categories 
against the CUES clusters found in the run above is given below. 
 

CUES group: 0 1 2 

Setosa 50 0 0 

Versicolor 0 50 0 

Virginica 0 19 31 

 
All fifty Iris Setosa cases have been put into a coherent group, and 31 of the Iris Virginica cases are in 
a group of their own; but 19 of the Virginica instances fall into a group which contains all fifty of the 
Iris Versicolor instances. In other words, some Virginica plants seem more like Versicolor than their 
own species. 
 
Below is a 2D scatter plot which illustrates this by showing the results in the space of 2 of the 
features, pw & sl. Here the colours distinguish the three CUES groupings while the plot symbols 
distinguish the pre-existing categories. It will be seen that Versicolor and Virginica examples do 
overlap in this feature space. A botanist might respond to this result by re-visiting the species 
assignment, or considering whether indeed Iris Versicolor and Virginica are distinct species. 
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How the program works 
The problem of clustering is relatively well suited to solution by an evolutionary approach, since a 
clustering can be described by a string of integers, one for each data case, with each integer 
indicating the class to which that particular case belongs. Strings of this type are exactly what 
evolutionary/genetic algorithms work with most effectively. They can be chopped up and 
recombined or mutated very simply to produce fresh candidate solutions, thus searching the space 
of all possible clusterings. 
 
The evolutionary optimizer used here can be found in the py3seal.py library, on folder p3. It is a 
streamlined version of a technique described in section 4.1 of Forsyth (1996). 
http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf 
 
To apply evolutionary optimization to this kind of problem, a 'fitness function' must be defined. This 
gives a quantitative evaluation of the quality of any given clustering. The current version of CUES 
implements three different fitness functions, one of which is selected by giving a number, 1, 2 or 3, 
as value of the optimode parameter in the parameter file. If none is give, mode 1 will be used. 
 
Optimode 1 is an original invention. The algorithm has a sociological or tribal flavour: it tries to 
ensure that as many cases as possible are grouped with other cases with which they have affinities 
(as defined by the dissimilarity/distance matrix) and apart from cases from which they are most 
different. It is also the fastest of the three modes and currently the default setting. The idea behind 
it is to create, for each item in the dataset, four sets of related items, namely 'pals', 'foes', 
'comrades' and 'outcasts'. Pals and foes are of fixed size, nf, where nf is the rounded square root of 
the number of rows in the dataset. For each case, its pals and foes are simply the nf nearest other 

http://www.richardsandesforsyth.net/pubs/ppsn1996.pdf
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cases to it and furthest from it, respectively. For each item its comrades are those items closer to it 
than the 25th percentile (lower quartile) of all the inter-item distances in the whole dataset. For 
each case its outcasts are simply those items whose distances from it are greater than the median 
(50% level) of all inter-item distances in the data. Thus the sizes of sets comrades and outcasts vary 
between cases, dependent on the density of the region around each case. 
 
Having established these four sets for each case in the data, the quality of a clustering is computed 
as follows. Each case contributes (A + B - C) to an overall total 
where 
A = (pg - fg) / nf 
B = c / co 
C = o / oc 
and where 
pg is the number of its pals in the current case's cluster; 
fg is the number of its foes in the current case's cluster; 
nf is the size of the sets pals & foes, as above; 
c is the number of its comrades in the current case's cluster; 
co is the number of comrades of the current case; 
o is the number of its outcasts in the current case's cluster; 
oc is the number of outcasts of the current case. 
 
The contributions of every case are summed and divided by twice the number of cases under 
consideration to give an overall fitness score which will be between -1 and 1. This may sound long-
winded, but it is faster to compute, in general, than the other two fitness functions. 
 
Optimode 2 was intended as a robust version of optimode 3, below, but it does not perform very 
satisfactorily in practice, so I may well remove it at some stage. Available at user's risk for 
experimentation. 
 
Optimode 3 is conceptually simple. It computes the mean value of all within-cluster inter-item 
distances and the mean value of all between-cluster inter-item distances then subtracts the former 
from the latter and divides by an estimate of the maximum expected difference. It increases with 
the proximity of cluster members to each other and with their distances to members of other 
clusters. It also lies in the range -1 to +1, though rarely getting close to those extremes. 
 
Notice that there is no explicit penalty in any of these formulas for the actual number of clusters. 
Nevertheless it is clear that, unless all inter-item distances are equal, the extremes of putting every 
item in the same cluster or putting every item in a different cluster cannot achieve a maximum 
score. In practice, optimode 1 tends to find its highest value near the natural logarithm of the 
number of data cases, and optimode 3 tends to find its highest value near the square root of the 
number of data cases. 
 
Example results 
Two further illustrations follow. The first is the classic Ruspini dataset (Ruspini, 1970) provided as 
ruspini.dat in the datasets subfolder. This has just 2 dimensions so is suited to plotting. With 
optimode 1, cues.py normally finds the 'standard' four-group solution; but with optimode 3, it tends 
to converge on a five-group solution, as illustrated here. Arguably, based on visual impression, a 6-
group solution would also make sense. You can judge for yourself by looking at the graph. 
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The second graph displays a solution found by applying cues.py to the eurodist.dat sample data file 
using optimode 1. Here the input is a distance matrix (road distances in kilometres). In order to 
display it as a 2D plot, I used R's sammon() multidimensional scaling function, from the MASS library, 
on the distances. This produced 2 dimensions which do roughly correspond to north-south and east-
west. The latter happens to be inverted from a geographic point of view, so its negation has been 
used as the x-axis. Here the program has found a four-group solution, as indicated by the colours. 
There is no definitive right answer, but this looks reasonable to my eyes. 
 
These graphs were obtained by reading the output file from cues.py, including the extra column 
headed 'clus_ter', into R and using R's plotting facilities. This is how I imagine users will generally 
employ the CUES software -- dumping data from R with write.table(), generating a clustering with 
cues.py, then re-reading the data with cluster labels back into R with read.delim() for further 
analyses. (I thought of writing the whole thing in R, but Python is faster and handles sets more 
neatly. Also I know Python better.) 
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Appendix 1 : Parameter Files 
 
Parameters used by cues.py are described below. 
 

Parameter Default value Function 

comment [None] This (or in fact any unrecognized parameter name, e.g. "##") can be 
used to insert reminders about what the file is meant to do. 

datfile [None] This should be the full file specification of a file that indicates where 
the input data is stored (in tab-delimited form with a header line 
naming the columns). 

distmode city This tells the system which distance mode to use. Any string other 
than "city" will cause Euclidean distances to be computed; 
otherwise city-block or 'Manhattan' distances will be calculated -- 
the default. Note that this parameter has no effect when an input 
matrix is given directly as input. 

dumpfile [None] This is the specification of the file where the main output will be 
written. Its contents will be the same as the input data (datfile) 
except that an additional column (headed 'clus_ter') will be 
appended, containing the numeric cluster codes. If none is 
specified, this file will have the jobname followed by "_dump.dat". 

jobname cues This gives the job a name. Any text string can be the value. It isn't 
necessary but it is useful as the jobname will be used as a prefix to 
the program's output files, so it can be seen that they form a group. 

listfile [None] File mainly for debugging output. If none is specified, the file will 
have the jobname followed by "_list.txt". 

longtime 3600 If the time elapsed, in seconds, is as long as or longer than this 
when the evolutionary phase has finished, only a highly abbreviated 
version of the post-tidying process will be performed. If less than 
longtime seconds have elapsed when the evolutionary phase 
finishes, the full post-tidying procedure will be executed. 

ntrials 131072 CUES uses an evolutionary algorithm to optimize the subdivision of 
the data, according to the fitness function selected by optimode. 
This parameter specifies how many evolutionary trials to make, i.e. 
how many gene-strings will be created during the evolutionary 
optimization process. [*] 

optimode 1 This selects one of three fitness functions to be used (1,2,3). 
Optimode 1 is the default. It is also the fastest. Optimode 3 tends to 
create a larger number of clusters. These modes are explained 
above, in the subsection headed "How the program works". 

outfile ..\op\cues.txt File that will receive parameter setting information, for reference. 

outpath ..\op\ Directory to receive output files. By default this is the op subfolder 
of the parent directory of the program. 

scaling 1 There are 3 scaling modes, 0 to 2: 0 indicates no scaling, i.e. using 
the data just as input; 1 requests scaling each column to give a 
value from 0 to 1 as a proportion of the range between the 
minimum and maximum values in that column; 2 causes each value 
to be standardized by subtracting the mean and dividing by the 
standard deviation of the column concerned. Note that scaling is 
not applied when distance matrices are input directly, only when 
the input is a 'normal' rectangular file. 

skipvars [None] This should be a line of variable names separated by commas, 
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identifying columns which are not to be used in the distance 
calculations. Note that at present only numeric columns are 
considered by CUES, so it isn't necessary to include string variables 
in this list. This parameter should not be used when a distance 
matrix is input directly to the program. 

 
[*] With modest-sized data sets, up to about 256 data points, CUES is surprisingly effective. 
However, the search space expands multiplicatively with the number of data points, so theory as 
well as practical experience suggests that the system will hit the 'combinatorial wall' somewhere 
around a thousand data points. 
 
N.B. At present, if you have more than 1 blank lines in a parameter file, the input routine chokes. I 
do plan to fix this at some stage; in the mean time, it is quite easy to delete empty lines using a text 
editor. 
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Appendix 2 : Sample Datafiles 
 
These are provided in the datasets subfolder, so that users can experiment with the system before 
using it on their own data sets. 
 
eurodist.dat 
This is a distance-matrix file containing road distances in km between a selection of 23 European 
towns and cities. 
 
iris.dat 
This is a rectangular data file with five columns containing information about three species of iris 
flowers (Anderson, 1935). It is commonly known as Fisher's Iris Data since it was studied by Sir 
Ronald Fisher in his development of the technique of linear discriminant analysis (LDA). 
 
lingdis1.dat 
This is a distance-matrix file derived from an article about relatedness among languages by Turchin 
et al. (2009). Their method involved taking 100 meanings in 53 languages (several of them 
reconstructed 'proto-languages') and recording the phonetic classes of first 2 consonants of the 
(most standard?) word with that meaning. I wrote a little Python program to compute from this 
table the number of mismatches between these 100 pairs of consonant classes for each language 
pair, thus constructing a dissimilarity matrix, held in the lingdis1.dat file. If you apply cues.py to this 
datafile with optimode 1, you will rediscover some of the classic language 'families' proposed by 
linguists, such as Altaic, Indo-European and Semitic. With optimode 3 you will rediscover many 
subfamilies, such as Germanic, Romance and Slavic. For reference, the original data is also provided 
in the file Turchin09CCM.txt, which can also be found online as an Excel file at: 
http://cliodynamics.info/data/SuppInfo.xls 
 
page113.dat 
This is a 2-dimensional dataset produced by random sampling from 2 different bivariate normal 
distributions -- 50 observations from each -- with the same parameter values as described in (Everitt, 
1993) and illustrated in figure 6.1 on page 113 of that book. It isn't exactly the same as the data that 
gave rise to that figure, but it is a sample of the same size with the same characteristics. 
 
ruspini.dat 
This is the classic 2-dimensional dataset used by Ruspini (1970) to test his clustering algorithm which 
has become something of a benchmark example in the field of cluster analysis. (Illustrated above.) 
 
wonglane.dat 
I produced this dataset of 52 items by measuring as well as I could the x & y coordinates, in 
millimetres, of the data points in figure 7.1 on page 129 of (Everitt, 1993). This figure derives from an 
article by Wong & Lane (1983), which I haven't read, though I'd be willing to wager a half pint of beer 
that at least 100 of the 104 coordinates that I transferred from the page will prove to be within plus 
or minus half a millimetre (appropriately scaled) of their correct values. First bet-taker only. ;-) 
 
zoobase.dat 
This is a home-brew dataset that I came up with many moons ago, which somehow found its way 
into the UCI machine-learning repository. It describes 101 animal species in terms of 16 attributes, 
most of them binary. Zoologically speaking it is rather amateurish, but it still serves as an instructive 
test case. Further details can be found in file zoobase.txt, in the same subfolder. 
 

http://cliodynamics.info/data/SuppInfo.xls
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Four datasets intended for use with EASTIRS have also been included, though they are less relevant 
to CUES: see Eastirs User Notes for details. 
 
aircraft.dat 
This dataset contains information (16 columns) concerning 103 makes of military aircraft used in 
World War II. For further details, see aircraft.txt in the same subfolder. 
 
lynxdat.dat 
This is the classic Canadian lynx time series, as obtained from the lynx dataset provided with the R 
package. http://www.R-project.org/. 
 
michuron.dat 
This data records the annual mean level of Lake Huron (which is the same as Lake Michigan) over the 
years 1918 to 2013, obtained from the U.S. National Oceanic and Atmospheric Administration 
website. http://www.glerl.noaa.gov/data/now/wlevels/levels.html 
 
spots101.dat 
This data series records the mean daily sunspot numbers observed during the period 1913 to 2013 
inclusive. Original source: WDC-SILSO, Royal Observatory of Belgium, Brussels. 
http://www.sidc.be/silso/datafiles 
 

http://www.r-project.org/
http://www.glerl.noaa.gov/data/now/wlevels/levels.html
http://www.sidc.be/silso/datafiles

